CSI3125, Functional programming, pa@ CSI3125, Functional programming, ps@@

(A (A) (A A)))

ﬂc:ozo:m_
programming BFRA. BT

Contents

» A session with Scheme 91
* Lisp in general 95
* Back to Scheme 99

Simple data structures

Compound data structures

Evaluating a function

List construction and access to elements
Function expressions and definitions of functions
Control

Higher-order functions 109
[A session with ML 113]

CSI3125, Functional programming, paée

A session with Scheme

A4

% scm

>' ((person Jack (married Jill))
(person Jim (single))
(person Jerry (alimony 800))

) . .

Meomao: jack (married jill)) (person jim
single)) (person jerry mm__Bo:V\ woowvv

> (cons 'alpha'(beta))
(alpha beta)

> ('symbol? 'alpha)
#t

> (symbol? '(alpha))
#f

> (symbol? alpha)

ERROR: unbound variable: alpha
; in expression: (... alpha)

; in top level environment.

> (null? 'alpha)
#f

> (null? ()

#t

> (cdr(cons'x'(yz)))
(y2)

> (cons'x(cdr'(yz)))
(x 2)

CSI3125, Functional programming, pe@

v Mgm::mAmagosmxv
v +x1)

#<unspecified>

> (addOne 10)
11

> (addOne (addOne 15))
17

> (define (conjxy)
VA:xV\EV

#<unspecified>

M_“ (conj (symbol?'(@)) (eg?'a'a))

v Mgm::mg_m_xv&
v ifx#ty)

#<unspecified>
> (disj(symbol?'(@)) (eq?'a'a))
#t

> (eg?'a'a)
#t
> (eg?'a'b)
#f

> (eg?'(a)'(a))
#f

CSI3125, Functional programming, pae@

>
(define (eqExpr? xvy)
(if MmV\Bco_‘.v X)
if (symbol?y)
M m% Xy)

N: (null? x)

Msc__\.V y)
if (eqExpr? (carx)

(cdry))
))))

#<unspecified>

> (eqExpr? ‘(ab(cd))
" '(ab(cd)))

Expr? ‘(ab(cd
M*AB Mv%cmwgmovv:

>
(define (eqExpr? xy)
; the same as built-in "equal?”
(cond bolo 5
symbol? x) (eq? x
MM:«:_@xv AwEA__,.v@vviv
((eqgExpr? (carx)(cary))
(eqExpr? (cdrx)(cdry)))

vvAm_wm #f)

#<unspecified>

CSI3125, Functional programming, pdég

> (egExpr? '(ab(cd))
" '(ab(cd)))

> (eqExpr? ‘(ab(cd))
» (ab(cde)))

> (define (member? KL)
(cond
Qsc__m " vo#mwom: L)) #t)
Xpr-
VVMM_MM %:chm% K Noo: L)))

#<unspecified>

> (member? 'aa’'(bbccaaeerrtt))
#t

> (member? 'aa’(bbcc (aa)eerrtt))
#f

> (define (append L1L2) ; built-in!
(f (null?L1)
L2

(cons(carlLl)
) (append (cdrL1)L2))

WARNING: redefining built-in append
#<unspecified>

> (append'(ab bccd)
‘(deeffggh))
Amccoogamm:@@:v

> (exit)
EXIT

CSI3125, Functional programming, pdéfe

Lisp in general

There were many dialects, starting with Lisp 1.5
(1960), through Scheme (1975) to Common Lisf
(1985).

[Other important functional programming
languages are Hope, ML, Miranda.]

Themathematical basisf many functional
programming languages Ascalculus (it allows
expressions that have functions as values).

Fundamental control mechanisms:
« function application,
 function composition,
» conditional schema,
e recursion.

Data structures are very simple:
e lists,
e atoms.

CSI3125, Functional programming, p&ég

Programs and data are expressed in the same
syntax:
 function applications and conditional schemats

are written as lists, in a parenthesized prefix
form;

 program and data are distinguished by context

This uniformity of data and programs gives
functional programming languages their
flexibility and expressive power:

programs can be manipulated as data.

A one-page interpreter of Lisp in Lisp was the
basis of a first ever bootstrapping implementatio
of a programming language (a very powerful
technique).

» Pure Lisp has onlfive primitive functions:

cons — build a list,

car — head of a list,

cdr — tail of a list,

eq — equality of atoms (Boolean),
atom — s this an atom (Boolean);

CSI3125, Functional programming, pa@je

* There are onlywo other essential operations:
 evaluate an expression,
» apply a function to (evaluated) arguments

(plus several auxiliary operations to help handl
argument lists and conditional evaluation).

Lisp is used interactively (as Prolog or Smalltalk

* the top level loop (“ear”) evaluates an
expression for its value or for its side-effects
such as I/O (this expression may invoke a
function that implements a large and comple:
algorithm),

» a Lisp program is a collection of functions the

top level

CSI3125, Functional programming, pdéf@

Expressions are normally evaluated: you must
specially ask Lisp to leave something unevaluat
(quoted).

Atoms are treated literally, that is, they stand for
themselves.

The name of an atom may mean something in tf
application domain, but that’'s not a concern for
the programming language.

Lisp 1.5 has several weaknesses:

« awkward (though elegantly uniform) syntax,

» dynamic scope rule,

e inconsistent treatment of functions as
arguments (because of dynamic scoping!).

CSI3125, Functional programming, pceg@

Back to Scheme
Scheme is a small but well-designed
subset/dialect of Lisp.

 Lexical scope rule.

» Correct treatment of functional arguments
(thanks to lexical scoping):

functions are first-class objects, that is, they
can be created, assigned to variables,
passed as arguments, returned as values.

Data structures in Scheme are simple, uniform a
versatile. They are callegstexpressionfike in
Lisp).

CSI3125, Functional programming, pat@0

Simple data structures

* A number: as usual (integer or float).

» A variable: a name bound to a data object, e.g
(define pi 3.14159)

A variable has a type implicitly, depending on its
value. It can be assigned a new value:

(set! pi 3.141592)
(set! pi 'alpha)

» A symbol is a name that is used for its shape
(it has no value other than itself).
(Lisp called symbols "atoms".)

CSI13125, Functional programming, patf@l

Compound data structures

(E1 E2 ... En) where Eare S-expressions.

Depending on context, a list is treated literally
(as a piece of data), e.qg.,

(William Shakespeare
(The Tempest))
or as d@unction applicatiorwith arguments

passed by value, e.g.

(append x y)
» A “dotted” pair (seldom used in practice)
underlies the structure of lists. A dotted pair is
produced byons :

cons(a B) returns(a. P)
Alist (E1 E2 ... En) is actually represented as

(cons Ei(cons E2 ...
(cons En(Q) ...)

that is, as

(Er1.(E2 (En.())

CSI3125, Functional programming, pat@?

Evaluating a function
Given: alist (B E1 ... En)

Evaluate b to get \b,
Evaluate & to get \4,

Apply Vo to V1, ..., Vn:
compute \O(V1, ..., Wn).

Evaluation may be suppressing by quoting

(quote pi) or, more conveniently,
Di

Examples:
(* 2.0 pi) gives6.283184
(* 2.0 'pi) has a wrong argument
(* 2.0 'pi) has a wrong function!
(write 'pi) outputs the symbaqdi

(write pi) outputs3.141592

CSI13125, Functional programming, pat@3

List construction and access to elements
A list is defined recursively:
o an empty listis() ,
* a non-empty list is
(cons a &)
whereé is a list.
The head and the tail of a list:
(car (cons a &)) equalsa
(cdr (cons a &)) equalsg
(car () and (cdr () are incorrect

There is a notational convention for accessing
further elements of a list:

(caar x) = (car (car x))

(cdadr x) = (cdr (car (cdr x))))

For example, consider this 4-step evaluation:

(caadar'((p ((qT) s) u) (v)))
(caadr'(p ((q 1) s) u))

(caar (g 1) s) u)
(car’((qr) s))

@n

CSI3125, Functional programming, paté4

Another example:

the second element of list—if it exists—is

(cadr x)

the third, fourth, ... elements—if they exist—are
(caddrx) ,(cadddrx) , etc.

car , cdr , cons are three (out of five) primitive
functions that ensure all the necessary access tc
lists. Two other primitives argredicates

functions that return a special symbl or #f .
(symbol? x)

if and only if x is a symbol,
(number? x)

if and only if x is a number,
(eq? xy)

if and only if the values of andy are
symbols and are identical.
Other commonly used predicates (they can be
defined using the primitive five):
(equal? x y) is true if the values of andy
are the same object, maybe not atomic.
(null? x) is true ifx is() , I.e. the empty list.

CSI3125, Functional programming, pat@éb

Function expressions and definitions of functions
(define (square x)(* x X))
or
(define square
(lambda (X)(* x X)))

Controlin Scheme (as in Lisp) is very simple:
function application, conditional schema, and—z
a concession to the imperative programming
habits—sequence (not discussed here).

The conditional schema:
(cond (Ci1 Ey)
(C2 BE))
(Cn En)
(else En+1))
The last part(else En+1) , is optional.
(Ci Ei) represents one condition-expression pa
Pairs are evaluated left-to-right. We stop when v
find a true G (its value is#t). We return Eas
the value of the whole conditional schema.

CSI3125, Functional programming, pat@s

The conditional schema, a special case:
(cond (Ci1 Ei) (else E2)
can be abbreviated as

(if Ci1 E1 Ep)

More examples of functions in Scheme:

(define (same_neighbours? I)
(cond

(null? 1) #)

((null? (cdr 1)) #f)
((equal? (car l)(cadr 1)) #t)

(else
(same_neighbours? (cdr [)))

))

CSI3125, Functional programming, patfe7

Stack operations in Scheme

CSI3125, Functional programming, pat@s

Minimum of a list

(define (empty? stack)
(null? stack)
)

defi inl |
NG _%m__ﬁ_v:)

(minl-aux (car I)(cdr)

))

(define (push elem stack)
(cons elem stack)
)

(define (pop stack)
(if (empty? stack)
stack
(cdr stack)

(define (minl-aux elt Ist)
(cond
M null? Ist) elt)
> elt (car Ist))
minl-aux (car Ist)(cdr _mcvw
(else (minl-aux elt (cdr Ist)))

))

A variant with local scope:

(define (top stack)
(if (empty? stack)
0

(car stack)

am::m $3_3_-mcx m_:mc
(if (null? Ist)
elt
A_mm _ _
carl (car Ist
A.Mdmo_: Mo% _mﬁWWV
_
> elt carl)

minl-aux carl cdrl)
minl-aux elt cdrl)

))))

CSI13125, Functional programming, pat@9

Higher-order functions
“Higher-order” means having functions as
arguments. The classic examplenap, the
operation of applying a function to a list and
returning a list:

(E1 E»... En) — ((FE1) (FE2) .. (fEn)

(define (map f 1)
(if _A:c__\.V 1)

(cons (f (car 1))
. (map f (cdr 1))

For example, this giveR 3 4)

(map (lambda(x) (+ x 1)) ‘(1 2 3))

A version of map which does something for all
elements, without creating a list of results:

(define (do-for-all f 1)
e“ﬂ (null? 1)

(let ((dummy (f (car 1))))
") (do-for-all f (cdr 1))

For example:
(do-for-all write '(1 2 3))

CSI3125, Functional programming, patfE0

Reducers

Let f be a binary operation, that is, a two
argument function. Let fO be a constant. We war
to express the following transformation:
Amn_. mN msv —

(f E1 (f E2 (f ... (f En fO) ...)
This is better written with f as an infix operator:
(E1 E2 ... En) - B2 f Eof . f En f fO
Examples:
(E1 E2 ... En) - BE1 + & + . + B+ 0
(E1 E2 ... En) - E1 * E2 * .. *En* 1
(define (reduce ffO)

(if (null? 1)
fO
(f (carl)
(reduce f fO (cdr 1))
)

Examples:
(reduce +0'(1 2 34)) gives10
(reduce*1'(1234)) gives24

What does this expression mean?
(reduce cons () '(1 2 34))

CSI13125, Functional programmin

Scheme—summary

«TO0oAdt»

