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Abstract The parity problem is a well-known benchmark

task in various areas of computer science. Here we consider

its version for one-dimensional, binary cellular automata,

with periodic boundary conditions: if the initial configu-

ration contains an odd number of 1s, the lattice should

converge to all 1s; otherwise, it should converge to all 0s.

Since the problem is ill-defined for even-sized lattices

(which, by definition, would never be able to converge to

1), it suffices to account for odd-sized lattices only. We are

interested in determining the minimal neighbourhood size

that allows the problem to be solvable for any arbitrary

initial configuration. On the one hand, we show that radius

2 is not sufficient, proving that there exists no radius 2 rule

that can solve the parity problem, even in the simpler case

of prime-sized lattices. On the other hand, we design a

radius 4 rule that converges correctly for any initial con-

figuration and formally prove its correctness. Whether or

not there exists a radius 3 rule that solves the parity

problem remains an open problem; however, we review

recent data against a solution in radius 3, thus providing

strong empirical evidence that there may not exist a radius

3 solution even for prime-sized lattices only, contrary to a

recent conjecture in the literature.

Keywords Elementary cellular automata � Emergent

computation � Parity problem � Density classification �
De Bruijn graphs

1 Introduction

Cellular automata (CAs) are dynamical systems discrete in

time and space, whose dynamics has been extensively

studied across a variety of disciplines from different per-

spectives (e.g., see Acerbi et al. 2009; Betel and Flocchini

2011; Boccara and Cheong 1993; Cattaneo et al. 2004;

Dennunzio et al. 2009; Kurka 2003; Langton 1986; Voo-

rhees 2009).

Understanding the nature of computations within cel-

lular automata remains however an elusive problem. In

fact, in spite of their long-proclaimed ability to perform

computations, very little is still known as to how we should

design the local state transitions towards achieving a given

global behaviour. As examples are designed or found by

search, it is inevitable to try to understand their underlying

programming language; but the truth is, to this date, every

attempt along these lines has fallen into the strenuous effort

of trying to tame local state patterns towards the global

state target, or trying to make sense of the latter in terms of

the former (Griffeath and Moore 2003).

On the other hand, studying how to employ local actions

to achieve desirable global behaviours is of utmost

importance and extensively investigated in many other

evolving systems (e.g., distributed systems, mobile robots,

population protocols). In such systems, in fact, under-

standing the limitations and the power of local interactions
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to solve global computations has immediate implications

for the design of efficient and scalable solutions (e.g., see

Angluin 1980; Angluin et al. 2007; Lenzen et al. 2008;

Peleg 2000). CAs are the simplest possible evolving sys-

tems, and understanding the impact that neighbourhood

size has on computability could have consequences for

more complex systems based on local interactions.

This paper is aligned with these efforts. Here, we con-

centrate on the one-dimensional parity problem, which has

essentially the objective of figuring out the parity of an

arbitrary binary string, by means of a one-dimensional,

binary cellular automaton (Sipper 1998). The parity prob-

lem is a well-known benchmark task in various areas of

computer science, typically camouflaged under the XOR

operation on a binary input, as in artificial neural networks

(Haykin 2008), but it also lends itself to the context of CAs,

as a typical case of a global problem that has to be solved

by purely local processing. The problem is formulated

under periodic boundary conditions and arbitrary finite

lattice size, so that, if the parity of the global configuration

is odd, the lattice is supposed to lead to an homogeneous

configuration with only 1s; otherwise, it should converge to

all 0s (Lee et al. 2001).

The notion of parity has appeared quite often in the CA

literature, even if implicitly, as it bears relevance to the

related notion of additivity of CA rules (Chaudhuri et al.

1997; Dennunzio et al. 2009; Voorhees 2009). However,

the parity problem per se has not been extensively studied,

particularly in comparison with the well-known benchmark

CA task of density classification, where the aim is to

determine the most frequent bit in the initial configuration

of an odd-sized lattice, also by reaching an homogeneous

configuration. The density classification problem, in fact,

has been extensively investigated and is fully understood in

odd-sized lattices. In particular, it has been shown that

there exists no single rule able to solve the problem for any

arbitrary initial configuration. Combinations of rules have

been devised, however, as well as probabilistic solutions to

the problem (e.g., see Fatès 2011, Fukś 1997, de Oliveira

et al. 2006, Wolz and de Oliveira 2008).

An advantage in favour of the parity problem is that,

from the perspective of automata theory, it is simpler than

its kin, insofar as the notion of parity can be handled by

finite automata, whereas the ability to compare arbitrarily

variable quantities (which is inherent to density classifi-

cation) requires at least a pushdown automaton (Hopcroft

et al. 2006). In fact, the increased simplicity of the parity

problem is reflected in the fact that it is easier to find good

rules for it, by searching, than for density classification

(Wolz and de Oliveira 2008). Therefore, there are strong

reasons for considering the parity problem generally more

tractable and amenable to analysis, which makes it a

serious candidate for case studies that might help the

understanding of the nature of computation in CAs in

general.

The parity problem is ill-defined for even-sized lattices

(by definition, an all 1 configuration converges to an all 0

configuration making it impossible for any rule to converge

to 1). Modifying the definition of the problem to allow the

target homogeneous configuration to be achieved only

once, and not as a fixed point, the problem becomes

solvable also for even lattices. In fact, by relying on this

variation, it can be perfectly solved by a carefully engi-

neered sequence of rule applications, quite surprisingly, of

elementary CAs (Martins and de Oliveira 2009). However,

if we do not want to change the definition of the problem, it

is then necessary to restrict the study to odd-sized lattices.

We then say that a CA rule is perfect if it solves the parity

problem for arbitrary initial odd-sized configurations.

Unlike the density classification problem, we show that

the parity problem can, indeed, be solved by a single rule.

Besides being interested in its general solvability, we are

also interested in determining the minimal neighbourhood

that allows the construction of a perfect rule. With this goal

in mind, we first prove that radius 2 is not sufficient for a

perfect rule to exist. We first identify several constraints to

which such a perfect rule is subject and we show that no

rule is feasible with all of these constraints. We then show

that the problem becomes solvable when CAs have radius

4: our proof is constructive as we design a perfect rule and

we prove its correctness. We leave open the case of whe-

ther or not there exists a radius 3 rule that solves the parity

problem; however, by reviewing recent data against a

solution in radius 3, we provide strong empirical evidence

that no such rule exists, even restricting to prime-sized

lattices, contrary to the conjecture in (Wolz and de Oliveira

2008).

2 Notation and basic facts

We consider one-dimensional, binary CA on finite lattices

with periodic boundary conditions, also called circular CAs.

Let f:{0, 1}2r?1 ? {0, 1} denote the local rule of a CA with

radius r. The global dynamics of a one-dimensional cellular

automaton composed of n cells and of radius r is then

defined by the global rule (or transition function): F:{0, 1}n

? {0, 1}n s.t. V X [ {0, 1}n, V i [ {0, …, n - 1},

F(X)i = f(xi-r …, xi, …, xi?r), where all operations on

indices are modulo n.

We will use the word configuration to refer to an ele-

ment of {0, 1}n, and will describe it as having size

n. Shorter sequences of bits will be called blocks. We will

again refer to the number of bits in a block as its size.
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Furthermore, we will often refer to an instance of the local

rule with specified input and resulting output as a transi-

tion. If the output differs from the central value of the

input, so that the local rule applied to a cell having the

neighbourhood described would result in the cell changing

values, we will call this an active transition.

A fixed point P [ {0,1}n of a circular CA with global

transition rule F is a configuration P such that F(P) = P.

We say that a cellular automaton converges to a con-

figuration P from configuration X0 if P is a fixed point and

if for some finite n, Fn(X0) = P where Fn is the nth iteration

of F. We are particularly interested in the homogeneous

configurations as fixed points and will refer to these as the

0-configuration and the 1-configuration.

For an arbitrary configuration, we say that it has odd

(resp. even) parity if it contains an odd (resp. even) number

of 1s.

We now recall the definition of de Bruijn graphs, which

are useful tools for representing CA rules and which will be

used in the subsequent sections. The de Bruijn graph of a

local rule of radius r is a directed graph on 22r nodes, one

for each value in the set {0,1}2r. There is an edge from

node x0… x2r-1 to node y1… y2r if xi = yi for all i from 1 to

2r - 1. These edges are labelled with the value of the

local function at (x0, …, x2r-1, y2r), f(x0, …, x2r-1, y2r) =

f(x0, y1, …, y2r). Note that the shape of the de Bruijn graph

for a local rule of a given family (i.e., those with the same

neighbourhood and states) is fixed, only the edge labels

change. For example, Fig. 1 shows the de Bruijn graph for

a radius 1 rule.

We say that a local rule solves the parity problem if,

starting from an arbitrary initial configuration, on an arbi-

trarily sized lattice, the cellular automaton converges to the

0-configuration, if and only if the initial configuration

contains an even number of 1s, and converges to the

1-configuration otherwise.

Since a rule solving the parity problem must converge to

the homogeneous configurations, we have our first two

simple properties of perfect rules.

Property 1 If f solves the parity problem, then

f(0, ..., 0) = 0 and f ð1; � � � ; 1Þ ¼ 1.

It is immediately obvious that, by definition, no solution

exists for even-sized lattices.

Theorem 1 Consider circular CAs with radius r and even

size n. There exists no rule that works correctly from any

initial configuration.

Proof Trivially f ð1. . .1Þ ¼ 0 otherwise the configuration

with all 1s would incorrectly converge to 1. Since

ð11111. . .111Þ is not a fixed point, it follows that no initial

configuration can ever converge to the 1-configuration. h

For this reason, from now on, we consider only odd-

sized lattices and we call a rule perfect if it solves the parity

problem for any odd-sized lattice, starting from any initial

configuration.

The following is a necessary condition for parity

preservation.

Property 2 In order for a rule to preserve the parity of a

configuration, the number of active transitions must be

even. That is, given a local rule f of radius r, and any

configuration ðx0; . . .; xn�1Þ; the number of times that

f ðxi�r; . . .; xi; . . .; xiþrÞ 6¼ xi is even.

It is also very simple to see that no solution exists for

elementary circular CAs (i.e., with radius 1).

Theorem 2 There exists no perfect rule for elementary

CAs.

Proof From Property 1, for any perfect rule, we must

have f(000) = 0 and f(111) = 1. Now consider a configu-

ration containing a single 1. In order to both maintain

parity and move towards convergence, we must have

f(100) = f(010) = f(001) = 1. Similarly, from the single-

ton 0, we must have f(110) = f(101) = f(011) = 0. So the

only possible perfect rule is the local parity check (rule

150). However, it is easy to see that such a rule does not

solve the parity problem for infinitely many initial con-

figurations: for example, the configuration (00100) leads to

cyclic behaviour. h

3 Impossibility with radius 2

In this section we show that with radius 2 it is impossible to

construct a perfect parity rule.

Our aim is to show, first, several necessary transitions

for a perfect rule, and second, the existence of a limited set

of feasible pre-images for the two final homogeneous

configurations. Each possible pair of feasible pre-images

further induces necessary transitions for a perfect rule,

significantly reducing the space of possible perfect rules.

01

00 11

10

0 1 0

1

01

0 1

Fig. 1 De Bruijn graph for the local parity rule (150)
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We conclude the proof by showing that the few remaining

rules have non-homogeneous fixed points. We begin with a

series of lemmata that force certain transitions to 0 or 1.

Lemma 1 Given a perfect rule, three or five of the fol-

lowing must transition to 1: (10000), (01000), (00100),

(00010), (00001).

Proof A configuration consisting of a single 1 must

eventually converge to all 1s, hence the number of 1s in the

configuration must increase. Furthermore, in order to

maintain parity, it must increase to an odd number. The five

blocks of size 5 above are the only ones occurring at the

local level that are not all 0s, and therefore 3 or 5 of them

must map to 1. h

Similarly,

Lemma 2 Given a perfect parity rule, three or five of the

following must transition to 0: (01111), (10111), (11011),

(11101), (11110).

Consider the de Bruijn graph for radius 2 rules. We

equate the parity of a cycle in the graph with the parity of

the set of its edges and we consider the set of all possible

pre-images of the final 0- and 1- configurations. For a given

global rule, a pre-image of a configuration is any config-

uration that is mapped to it by that rule. Any pre-image of

the final 0-configuration must correspond to a cycle of odd

size and even parity, while any pre-image of the final

1-configuration is a cycle of odd size and odd parity. Let B0

be the subgraph containing only the edges corresponding to

transitions to 0 and B1 the subgraph containing the edges

corresponding to transitions to 1.

Lemma 3 Neither B0 nor B1 can contain a cycle of

even size and odd parity.

Proof A cycle of even size in either B0 or B1 will become

a sequence having even parity at the next iteration since it

will be either all 0s or all 1s , so this cycle itself will have

changed parity. Assume that the de Bruijn graph of a rule

F admits such a cycle, let C be such a cycle and let P be a

cycle of odd size passing through a node of C. For the rule

to be perfect, F(P) must have the same parity as P. Now

consider a new cycle P0 formed from P by adding the cycle

C where P passes through it. Since C has even size, P0

has odd size. Since C has odd parity, P and P0 have dif-

ferent parity. However, since F(C) has even parity,

F(P0) = F(P), hence the parity of P0 has changed and

F cannot be perfect. h

Lemma 4 Let f be a perfect parity rule, then either: i)

f(10101) = 1 and f(01010) = 0, or ii) f(10101) = 0

and f(01010) = 1.

Proof This is a direct consequence of Lemma 3 since

f(10101) = f(01010) would imply the existence of the even

cycle with odd parity (1010, 0101, 1010, 0101, 1010, 0101)

either inB0 or inB1. h

Lemma 5 Given a perfect parity rule, it is impossible to

have four or more consecutive 0s in a pre-image of the

0-configuration.

Proof Let the block (0000) be present in a pre-image P of

the 0-configuration. Then the following neighbourhood

blocks must also be present and must be transitioning to 0:

(10000) and (00001). By Lemma 1, we must then have the

following blocks transitioning to 1, so they may not occur in

P: (01000), (00100), (00010). Hence our group of four 0s

must be both preceded and followed by at least two 1s, thus

entailing that we have the must have the following transi-

tions f(11000) = f(00011) = f(10000) = f(00001) = 0.

Consider now an initial configuration of size greater than 7

containing a single 1 surrounded by 0s. From S, we have

that the subsequence 0001000 can only grow to 0011100,

but, again from S, we have that, from 0011100, no growth is

possible anymore, which is a contradiction. h

Analogously, we have:

Lemma 6 Given a perfect parity rule, it is impossible to

have four or more consecutive 1s in a pre-image of the

1-configuration.

From Lemma 3, any feasible pre-image of the 0-con-

figuration (resp. 1-configuration) corresponds to either a

simple odd cycle c with even (resp. odd) parity, or the

composition of cycles not containing any even cycle of odd

parity.

So, to identify feasible pre-images for final configura-

tions for lattice size n in the de Bruijn graph, we have to

find at least one cycle of size n to be labeled 0 and one to be

labeled 1, having the property that they do not include:

(i) the self-loops (which are forbidden by Lemmata 5

and 6),

(ii) the 2-cycle (0101,1010) (which is forbidden by

Lemma 4); and

(iii) an even cycle with odd parity (forbidden by

Lemma 3).

By inspecting all cycles of size 5, we obtain that:

Lemma 7 In a perfect rule at least one of these three

cycles in the de Bruijn graph must transition to 1:

B1
5 = (0011, 0111, 1110, 1100, 1001) (corresponding to

configuration: 00111)

B2
5 = (0000, 0001, 0010, 0100, 1000) (corresponding to

configuration: 00001)
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B3
5 = (0101, 1011, 0110, 1101, 1010) (corresponding to

configuration: 01011)

and one of these must transition to 0:

W1
5 = (0001, 0011, 0110, 1100, 1000) (corresponding

to configuration: 00011)

W2
5 = (0111, 1111, 1110, 1101, 1011) (corresponding

to configuration: 01111)

W3
5 = (0010, 0101, 1010, 0100, 1001) (corresponding

to configuration: 00101)

Proof B1
5, B2

5 and B3
5 (resp. W1

5, W2
5 and W3

5) are the only

cycles corresponding to feasible pre-images for the

1-configuration (resp. 0-configuration) for lattices of size 5,

which do not violate Lemmata 4, 5, and 6. h

Consider, now, lattices of size 7. All cycles of size 7

have been enumerated and the only cycles that do not

contradict Lemmata 3, 4, 5, and 6 and correspond to fea-

sible pre-images of the 1-configuration are:

B1
7 = (0000, 0001, 0011, 0111, 1110, 1100, 1000)

(configuration: 0000111)

B2
7 = (0001, 0011, 0110, 1101, 1010, 0100, 1000)

(configuration: 0001101)

B3
7 = (0001, 0010, 0101, 1011, 0110, 1100, 1000)

(configuration: 0001011)

B4
7 = (1001, 0011, 0110, 1100, 1001, 0010, 0100)

(configuration: 1001100)

Analogously, the only cycles which do not violate

Lemmata 3, 4, 5, and 6 and correspond to feasible pre-

images of the 0-configuration are:

W1
7 = (0001, 0011, 0111, 1111, 1110, 1100, 1000)

(configuration: 0001111)

W2
7 = (0010, 0101, 1011, 0111, 1110, 1100, 1001)

(configuration: 0010111)

W3
7 = (0011, 0111, 1110, 1101, 1010, 0100, 1001)

(configuration: 0011101)

W4
7 = (0110, 1100, 1001, 0011, 0110, 1101, 1011)

(configuration: 0110011)

From simple observation, we can rule out some of these

cycles and combinations of cycles.

Lemma 8 A perfect rule of radius 2 cannot have W1
5 as

a pre-image of the 0-configuration.

Proof Cycle W1
5 shares at least one transition in common

with each of the possible pre-images of the 1-configuration

of size 7. For example, W1
5, B1

7 and B2
7 all share the edge

(0001, 0011) in the de Bruijn graph. Cycles W1
5 and B3

7

share (0010, 0101), and W1
5 shares (0011,0110) with B4

7. h

Lemma 9 A perfect rule of radius 2 cannot have B2
7 as

a pre-image of the 1-configuration.

Proof First, if B2
7 is a pre-image of the 1-configuration,

then W2
5 is a pre-image of the 0-configuration of size 5

since B2
7 and W3

5 share (1010, 0100). Cycle B2
7 also has

transitions in common with W1
7, W3

7, W4
7. It has no common

transitions with W2
7, however, W2

7 and W2
5 together form

the cycle (0111, 1110, 1101, 1011), in violation of

Lemma 3. h

Similarly,

Lemma 10 we can show, A perfect rule of radius 2

cannot have B3
7 as a pre-image of the 1-configuration.

In fact, we can now restrict to very well defined possible

cases.

Lemma 11 A perfect rule of radius 2 must have W2
5 as a

pre-image of the 0-configuration, B2
5 as a pre-image of the

1-configuration and either

– B1
7 as a pre-image of the 1-configuration and W4

7 as a

pre-image of the 0-configuration, or

– B4
7 as a pre-image of the 1-configuration and W1

7 as a

pre-image of the 0-configuration.

Proof From the lemmata above, we know that the only

possible pre-images of the 1-configuration of size 7 are B1
7

and B4
7. Cycle B1

7 has transitions in common with all pos-

sible pre-images of the 0-configuration except W4
7. Of the

5-cycle pre-images of the 1-configuration, only B2
5 is

compatible with W4
7. Of the possible pre-images of the

0-configuration of size 5, neither W2
5 nor W3

5 poses any

conflict, however, W3
5 makes it impossible to have any

cycles of size 3 going to the 1-configuration, so that all

configurations having a period of size 3, (i.e. configurations

of the form ð001001001 � � � 001Þ) will fail to converge. The

proof is analogous beginning with cycle B4
7. h

We can finally conclude:

Theorem 3 There is no perfect parity rule of radius 2.

Proof From the lemmata in this section it follows that for

a perfect parity rule of radius 2, we must have one of the de

Bruijn graphs shown in Figs. 2 or 3. However, from

observation of Fig. 2 we see that (00111) is a fixed point,

while (00011) is a fixed point for Fig. 3. h

A final note concerns lattices of prime size. It has been

conjectured, in the case of radius 3, that there may exist

rules with the desired behaviour on arbitrary lattices of

prime size (Wolz and de Oliveira 2008). While the case of

radius 3 is still open, we can show that the impossibility

result for radius 2 holds even if we restrict the discussion to

prime-sized lattices.

Theorem 4 There is no radius 2 rule that always solves

the parity problem even restricting to lattices of prime size.
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Proof Restricting to prime-sized lattices, we can no longer

use Lemma 11. This introduces only a few possible extra

cases using B3
5 or W3

5. Consider rules containing B3
5. As

before, we can eliminate W1
5, B2

7 and B3
7 as pre-images of the

0- and 1- configurations. In addition, B3
5 conflicts with W2

7

and W3
7 on the edge from 0101 to 1011 and with W4

7 on the

edge from 0110 to 1101. Hence, we must have W1
7 as the

7-cycle pre-image of the 0-configuration. Now, B1
7 conflicts

with W1
7, so we are left with B4

7 as the 7-cycle pre-image of

the 1-configuration. Since B4
7 conflicts with W3

5 on the edge

from 0100 to 1001, we are left with W2
5 as the 5-cycle pre-

image of the 0-configuration. These results are illustrated in

the graph of Fig. 4. Proposition 2 dictates that the edges

labeled a3 must be the same, as will be the edges labeled b3.

Now consider rules containing W3
5. Similar analysis shows

that must have B2
5, W4

7 and B1
7, as illustrated in Fig. 5. As

before, these rules have fixed points at (00011) and (00111),

respectively, for the rules given by Figs. 4 and 5. h

4 A perfect rule with radius 4

We now describe the construction of a rule with radius 4

having the desired properties: parity preservation and

convergence to a homogeneous configuration. The inten-

tion is to first give the reader an intuitive understanding of

how the rule works and how it was developed. Formal

proofs will follow in the subsequent section.

4.1 Rule BFO

The most compact representation of rule BFO that we

propose for solving the parity problem in any lattice of odd

size is given in Fig. 6 and corresponds to rule number:

12766019579927887748828308783632125137208948629

5714341994- 043940026716959918692677270729174543

77539194754200976283425175983876- 539715064584

172642413634846720 in Wolfram’s lexicographic order-

ing scheme. The figure shows all active transitions (i.e.,

transitions that change the current state). However, it is

often easier to explain why and how the rule works using a

less compact form, where pairs of rules can be made

explicit. This form of the rule is given in Fig. 7; we will be

referring to this representation in the remainder of this

section.

We now describe the intended behaviour of the rule

before proving its correctness. Consider an initial config-

uration X0 as being formed by blocks bi of consecutive

1s separated by blocks wi of consecutive 0s: X0 ¼
ðb0

1;w
0
1; b

0
2;w

0
2; � � � ; b0

k ;w
0
k � � �Þ. The idea of our construction

is to have a block bi of 1s propagate to the right, two cells

per iteration, until a stopping condition or convergence has

been reached. Such propagation might result in merging the

block with the next bi?1 (if the corresponding wi is of even

size). When the merger does not occur (because |wi| is odd

or due to some other condition), there will be a propagation

of 0s to the left, led by a block of the form (01). Such

0011

1100

0000 1111

0101

1010

0001 0010 1011 0111

1000 0100 1101 1110

1001 0110

0 1

0

0

0

1

1

1

1

1

1

1

0

0

0

0

1
0

1
1

1
1

0

00

0

x1

NOT x1

a1 b1

c1
d1

Fig. 2 Possible perfect rule for radius 2, with B1
7 and W4

7
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counter-propagation might result in the total annihilation of

the block of 1s. Otherwise, it will result in the creation of a

single 1 surrounded by 0s, which will start propagating to

the right again. We will show that such behaviour reduces

the number of blocks, eventually converging to an

homogenous configuration.

We now describe some properties of the rule that can

easily be derived by construction and that give an intuition

0011

1100

0000 1111

0101

1010

0001 0010 1011 0111

1000 0100 1101 1110

1001 0110

0 1

0

0

0

1

1

1

1

1

1

1

0

0

0

0

1
0

0
0

00

1
1

11

x2

NOT x2

a2 b2

d2c2

Fig. 3 Possible perfect rule for radius 2, with B4
7 and W1

7

0011

1100

0000 1111

0101

1010

0001 0010 1011 0111

1000 0100 1101 1110
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for the reasons for the behaviour described above. Note

that, by construction, the rule’s transitions always occur in

pairs; in other words, whenever a transition occurs in a cell,

another transition occurs in its neighbourhood. It is useful

to describe the behaviour of each pair and we will also use

these pairs to prove that parity is being preserved.

– Rightward growth of 1-blocks a singleton 1 grows to the

right, by two 1s at each step, if it is preceded and

followed by at least two 0s, as prescribed by transitions

T3 and T4. A block of three or more 1s grows to the right

if it is followed (on the right) by at least two 0s. This

behaviour is created by the pair of transitions T1 and T2.

– Annihilation of pairs of 1s as a consequence of

transitions T5 and T6, an isolated pair of 1s is always

eliminated.

– Leftward growth of 0-blocks a (01) block moves to the

left, leading a growing block of 0s (at a growth rate of

two 0s per step) if there are at least three 1s to its left

and one of the following: (i) at least three 1s to the right

of the 0 (the growth is obtained by the pair of

transitions, (T9,T11); or (ii) at least one 0 to its right

(due to T9 and T10). Note that the pair (T9,T11) starts the

growth of a 0-block, while the pair (T9,T10) continues

the growth as far as possible.

– Local shift a (101) block is transformed into (110) if

there are a 0 on its left and at least two 0s on its right

(combination of transitions T7 and T8).

– Local adjustment finally, if a (0110) block is preceded

by at least three 1s that is, ð. . .1110110. . .Þ occurs, in

order to avoid parity errors due to the annihilation of

the pair of 1s, we force the creation of a solid block of

0s to the right of the existing block of 1s with transition

pair (T9, T12), so that ð. . .1110110. . .Þ becomes

ð. . .1000000. . .Þ.

Examples of the evolution of the rule are given in Fig. 8.

4.2 Correctness

In order to show that the rule we have constructed (or in

fact any rule) performs a perfect parity check, we must

Fig. 6 Minimised rule BFO (the asterisk * refers to any value)
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Fig. 5 Additional possible perfect rules for radius 2 on prime lattices with B2
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prove that it preserves parity at every iteration, and that it

always converges in finite time to an homogeneous con-

figuration. We begin with the proof of parity conservation.

4.2.1 Parity preservation

A rule preserves the parity of a configuration if active

transitions always come in pairs. That is, given a local rule

f of radius r, and any configuration ðx0; . . .; xn�1Þ; the

number of times that f ðxi�r; . . .; xi; . . .; xiþrÞ 6¼ xi is even.

To show that our rule does indeed have this property, we

will use a modification of the de Bruijn graph.

Given a configuration X ¼ ðx1; . . .xnÞ; one can deter-

mine the next iteration, F(X) by reading the edge labels as

one traverses the graph from ðxi�4. . .xi. . .xiþ3Þ to

ðxi�3. . .xi. . .xiþ4Þ. Since we are considering circular con-

figurations, the traversal of the de Bruijn graph will result

in a closed loop. For our purposes, we are not interested in

what the actual output is, only if an active transition has

occurred. In keeping with that, we are, in fact, only inter-

ested in the parts of the graph where such transitions occur.

Since a de Bruijn graph for a function of radius 4 can be

quite unwieldy, we define a reduced transitional de Bruijn

graph modifying the standard de Bruijn graph as follows.

First, we label the edges with Ti (indicating one of our 12

active state transitions), or N, meaning no transition. Sec-

ond, we draw only those parts of the graph connected to

transitions, reducing the rest of the graph to a single node,

denoted by an asterisk. Also, where there is no conflict,

several nodes leading to or from the same transition are

depicted as one, using the notation of the previous section;

for example, there is an edge from node (*11100**) to

(11100***), because of the various state transitions

entailed by T1, given all possible values for the * symbols.

Furthermore, we ensure that all nodes in the reduced

transitional de Bruijn graph are distinct for all values of the

* symbol. Finally, for any nodes occurring explicitly in the

graph, all adjacent edges are represented, whether they

correspond to a transition or not. It is easy to see that parity

preservation can be detected from the reduced transitional

de Bruijn graph for a given rule; more precisely:

Lemma 12 A rule is parity preserving if and only if any

cycle in its reduced transitional de Bruijn graph contains

an even number of edges labeled with some transition Ti.

Fig. 8 Evolution of rule BFO

for even parity (left) and odd

parity (right). A black cell
corresponds to 1, a white cell
corresponds to 0. The initial

configuration is at the top and

time goes downward

Fig. 7 Active rule transitions

(left) and behaviour of

combinations of rules (right)
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Proof Since the output of a circular CA is given by the

edge labels of a cycle in its de Bruijn graph, we need only

count the transitions to verify parity preservation. Fur-

thermore, the reduced graph compresses only parts of the

graphs where no transitions occur. Hence, if the are no

cycles containing an odd number of transitions in the

reduced graph, there can be no configurations leading to an

odd number of transitions and vice versa. h

By inspecting the transitional de Bruijn graph for rule

BFO (Fig. 9), and by noticing that there are no cycles

containing an odd number of transitions, we then have:

Theorem 5 Rule BFO is parity preserving.

4.2.2 Convergence

We now turn our attention to the more challenging problem

of proving that this rule will converge under any condition.

We can think of any CA configuration as an alternating

sequence of blocks of 0s and blocks of 1s of varying sizes.

We will show that BFO eventually converges by showing

that its only fixed points are the homogeneous configura-

tions and, furthermore, that any change in the configuration

will lead, in a finite number of iterations, to a reduction in

the overall number of blocks. Our first lemma shows that

every non-homogeneous configuration is changing.

Lemma 13 The only fixed points of rule BFO are the

homogeneous configurations.

Proof A non-homogeneous fixed-point configuration

cannot contain pairs of 1s, since rule pair (T5,T6) would

apply. It cannot contain a block of three or more 1s since

(T1,T2) would apply if it is followed by two or more 0s, and

a transition pair containing T9 would apply if it is followed

by only one 0. Therefore, a non-homogeneous fixed-point

configuration could only contain isolated 1s but the odd

size of the configuration would imply that we must have at

least two consecutive 0s, hence the sub-configuration 0100

must occur. If this is preceded by a 0, (T3,T4) apply. If it is

preceded by a 01, (T7,T8) apply. h

*

*11100** 11100***

***0110*

**0110**

00100***

*00100**

T1

T2

N

T5

T6

N

T3
T4

**010100

*010100* N

T7

T8
***11101

**11101*

1110111*

*111010*

111010**

*1110110

*1110111

N

T9

T11

N

N

T10

N

T12

N

N

N

Fig. 9 Reduced transitional de Bruijn graph for rule BFO

T11, T12 

T9, T10 T5, T6
 

T3, T4T1, T2
 

Fig. 10 Accordion loop
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We now show that every transition pair will eventually

lead to a reduction in the total number of blocks. We begin

with the transition pairs for which this is immediate.

Lemma 14 Transition pairs (T5,T6), (T7,T8) and qua-

druplet (T9, T12, T5, T6) lead to block reduction in a single

step.

Lemma 15 Transition pair (T9,T10) leads to block

reduction in a finite number of steps.

Proof Rule pair T9:f(***11 101*) = 0 and T10:f(1110 1

0***) = 0 causes the leftward growth of 0-blocks. While a

single application of this pair maintains the number of

blocks, it leads (possibly through a repeated application of

the pair) to an eventual block reduction through either an

annihilation or the creation of a single 1:

 00001000 � � � by rules T5 andT6

0111010 � � � 0101000 � � � by rules T9 and T10

 0110000 � � � by rules T7 and T8

 0000000 � � � by rules T5 and T6

Notice that (T9,T10) leads to reducing the number of blocks

by either two or four, depending on the parity of the block

of 1s on which it is acting. Also note that, even though it is

possible for the leading block of 1s to have shrunk from the

left side, while the (T9, T10) pair is reducing it from the

right, one of these two situations will still be reached,

since, on the left, the 1s can only be eliminated one at a

time. h

Lemma 16 Transition pairs (T1,T2), and (T3,T4) lead to

either reduction or maintenance of the number of blocks.

Proof Both pairs T1:f(*111 0 0***) = 1, T2:f(1110 0

****) = 1, and T3:f(*001 0 0***) = 1, T4:f(0010 0

****) = 1 are responsible for the rightward growth of

1-blocks. In fact, they grow a block of 1s until it either

merges with the next block or an isolated 0 preceded by

three or more 1s is created. At this point, one of the fol-

lowing transition sets will apply: (T9,T10) if the isolated 0 is

followed by 10, (T9, T12, T5, T6) if it is followed by 110,

and (T9,T11) if it is followed by three or more 1s. We have

already seen that the first two cases lead to block reduction,

only the latter case can maintain block numbers. h

Lemma 17 Transition pair (T9,T11) leads to reduction or

maintenance of the number of blocks in a finite number of

steps.

Proof The pair T9:f(***11 101*) = 0, T11:f(***1 1

1011) = 0 is responsible for the start of 0-growth. This is

the only rule pair that initially increases the number of

blocks. It is the beginning of the growth of 0s from an

isolated 0 surround by three or more 1s on either side. Once

this growth has begun, it is continued by the (T9,T10) pair

until the number of blocks has been returned to its original

size or is reduced by two. h

Note that in the proof above, if the original number of

blocks is maintained, it is because the transitions have

produced an isolated 1 with two or more 0s on either side

which then begins to grow to the right either merging with

the block on the right (and thus reducing the total number

of blocks) or creating an isolated 0 which then begins to

grow left. What we wish to avoid is a CA which evolves to

a periodic configuration of 1s growing until only an iso-

lated 0 remains and then shrinking back to an isolated 1

which then regrows. We call this block of growing and

shrinking the accordion effect. In the next lemma, we show

that the accordion effect cannot occur on lattices of odd

size.

Lemma 18 The accordion effect can only occur on lat-

tices of even size.

Proof Figure 10 shows the transition pairs involved in a

cycle of growing and shrinking. If we think of this loop as

starting from the (T9, T11) node, a block of 1s is shrinking

Fig. 11 The accordion effect

on an even-sized lattice (left)
and the successful resolution of

an odd-sized lattice (right)
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until the (T5, T6) node is reached and then beginning with

the (T3, T4) pair, a block of 1s begins to grow (Fig. 11). Let

us assume that the entire lattice is perpetually in some stage

of this cycle. We make several observations:

– The 1-blocks start off having odd size.

– The 0-blocks start off having even size.

– In order for a block of 1s to regrow, it must have even

size at the end of the shrinking process.

– In order for a 0-block to grow, it must have odd size at

the end of the growth of 1s.

Since the entire configuration is in this process, it is made

up of sub-configurations of two forms: bi wi, a block of 1s

Fig. 12 Good radius-3 candidates to solve the parity problem from prime-sized lattices
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followed by a block of 0s when the 1s are growing; or

bi01wi a block of 1s separated by a 01 from a block of 0s

when the block of 1s is shrinking. Consider a block of 0s,

w1 followed by a block of 1s, b2. If w1 has odd size, then it

must not change sizes again before the growth of 0s

restarts. Otherwise when the block of 1s on its left, b1

grows, it will merge with b2. This means that (T9,T11) must

be applied on the left before (T5,T6) can be applied on the

right. Hence b2 will shrink by 1 before the 1s have finished

shrinking on the right. Since we will need to have an even

number of 1s at that time, we must now have an odd

number of 1s. In other words, a block of 0s of odd size is

always followed by a block of 1s of odd size. Now assume

that b1 has even size. In this case it must change sizes

before the regrowth of 1s is complete, so (T5,T6) must be

applied on the right before (T9,T11) is applied on the left

again. Hence w2 must already have even size. Taken

together, we see that for the accordion effect to endure in

perpetuity, the CA must have even size. h

Finally, taking these various lemmata together, we have

the heart of our convergence proof.

Lemma 19 From any non-homogeneous configuration,

the total number of blocks decreases in finite time.

Proof From the previous lemmata, we see that only rule

pair (T9, T11) increases the number of blocks and that

within a finite number of steps, this increase is resolved.

Our contention is that the accordion effect is the only way

to maintain block numbers. Consider a (T9, T11) pair

occurring anywhere in our CA. If the leading block of 1s is

odd at the end of the execution of the (T9, T10) pairs, then

the number of blocks had decreased by two. If it is even,

the 1s will begin to grow right. If the 0-block created by the

execution of (T9, T11) is unchanged from the right, then it

has even size and the regrowth of 1s will result in a merger

of 1s and a reduction in the number of blocks. Now the

only way for the 0-block to have changed on the right is if

the 1-block on its right had shrunk due to the application of

(T9, T10) or (T9, T11). If the reduction in the 1-block was not

initiated by the (T9, T11) pair, then real reduction in the

number of blocks has occurred. If it was initiated by

(T9, T11), then block reduction can only be prevented if

another (T9, T11) pair is being executed to its right. Arguing

in this way, we see that reduction in total block number can

only be avoided if the CA is experiencing the accordion

effect which can only occur in even-sized lattices. h

From Theorem 5 and Lemmata 13 and 19, we obtain:

Theorem 6 Given a CA of odd size, rule BFO converges

to all 1s if the initial configuration has odd parity and to all

0s if it has even parity.

5 Empirical evidence against a solution for radius 3

According to (Wolz and de Oliveira 2008), no perfect rule

was found for all odd initial configuration (IC) sizes less

than 25, but about 250 perfect rules were found for all

prime-sized ICs in the range of 11 to 31. This was checked

by completely enumerating all possible ICs in the range.

These rules were then tested against 2 sequential and

independent sets, each one with 400 billion random odd-

sized ICs in the range from 37 to 149; as a result, 103 rules

survived the first test, and 98 survived the second. Adding

another, found later, resulted in a set of 99 very good rules

for the parity problem, all with radius 3 (all of them in

individual classes of dynamical equivalence, each class

having exactly 4 members). Their decimal numbers are

listed in Fig. 12 (in Wolfram’s lexicographic order), with

the most recently added rule showing as the first one in the

list. Only four of them had been shown in (Wolz and de

Oliveira 2008), all the others are only now being unveiled.

Further to the intensive testing the rules above under-

went, as described, it should be remarked that they were

originally found in (Wolz and de Oliveira 2008) after very

intensive searches in the entire radius 3 space, carried out

through the most sophisticated evolutionary algorithm

described so far in the literature, for CAs rule spaces. This

is strong empirical evidence that a perfect rule might not

exist for odd-sized lattices, but that it might for prime sizes,

the 99 rules above being strong candidates.

However, by studying their failure behaviour, we were

able to construct specific prime-sized ICs for 79 of them,

thus gathering evidence that a prime perfect rule might not

exist either. A summary of the corresponding data is pre-

sented next. For what follows, the rules are referred to by

their order index in the table.

First of all, our own analysis with respect to details of

their failure showed that rule 1 fails for any IC with size a

multiple of 3. And, according to (Wolz and de Oliveira

2008), rules 2 through 99 would fail for some IC of size 25.

In keeping with these findings, we verified that this is

indeed the case; but, in fact, most rules fail even for size

15. The details are as follows:

– Only the following rules {42, 45, 47, 48, 49, 50, 51, 52,

53, 55, 56, 59, 60} do not fail on all ICs of size 15.

– Out of these 13 rules, only rule 52 fails for some IC of

size 21, thus leaving the other 12 unscathed.

– These remaining 12 rules {42, 45, 47, 48, 49, 50, 51,

53, 55, 56, 59, 60} eventually fail for some IC size 25.

The ICs that make the latter 12 rules fail lead them to

cyclic regimes, with periods 50 (most often) or 25. Based

upon these failing ICs, the prime number sized IC (size 83)

given by
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0111081703150111041307190113011106150517011102

was constructed. Here, the exponents indicated the number

of consecutive 1s or 0s. This IC made 55 out of the 99 rules

fail, thus leaving the following 44 unscathed: {1, 2, 3, 4,

41, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96, 97, 98, 99}.

However, from this set, 24 failed on further specially

constructed prime-sized ICs, conceived by direct analysis

of the specific periodic patterns that appear in the rules, as

they failed for size 25. The conclusion was as follows:

1. Rules {61, 62, 63, 64} failed on an IC of size 83,

constructed from observing the two configurations,

periods 50 and 25. The IC was:

01110101601110214071201110618011309140111041603:

2. {65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80} failed on an (yet another) IC of size 83,

constructed from observing two other configurations,

also with periods 50 and 25. The failing IC was

0611031101160515071101130118071305110114031703:

3. {1, 97, 98, 99} failed on an IC of size 157, constructed

from observing two configurations, periods 225 and

10. This time the failing IC was

0211031119011201317019110011102312502:

In summary, the data above shows that, out of the

original 99 rules, 20 of them remain that have not yet failed

on any prime-sized IC: {84, 85, 86, 87, 88}, which happen

to fail for size 25, and {2, 3, 4, 41, 81, 82, 83, 89, 90, 91,

92, 93, 94, 95, 96}, which do not fail for size 25.

Therefore, although the problem has not yet been settled,

all in all the data makes a strong empirical case against a

solution of the parity problem for radius 3, even

considering only prime-sized lattices.

6 Concluding remarks

In this paper, we have established upper and lower bounds

on the radius of rules that solve the parity problem by

showing that there exists a rule of radius 4 which converges

to all 1s if the initial configuration is odd, and to all 0s if it

is even and, further, by proving that this problem is

unsolvable by rules of radius 2, even with the less strict

condition of prime-sized lattices.

The corresponding questions for radius 3 remain open,

in spite of the strong empirical evidence we provided

against the existence of a solution, even in the simpler case

of prime-sized lattices only. We believe that the tools

developed in the paper should be helpful to resolve this

issue as well.

It is clear by now, how painstaking the task of designing

a CA rule can be, let alone the formal proof of its cor-

rectness. To some extent, the process reminds us of similar

programming efforts on simple, pre-modern computational

models, such as Turing machines. And in this sense, we are

still indeed at this point in history, when programming

CAs.

Since our main motivation for addressing the parity

problem is not conscribed to it, one may ask how gener-

alisable our experience herein could be to related problems,

including the parity problem for radius 3, as well as other

related computational problems for CAs. It is tempting to

think of the possibility of implementing a high-level pro-

gramming approach that would automatically generate the

state transitions of a CA rule, given the kinds of notions we

have used, such as the growth of blocks of a given size in a

given direction, the annihilation of blocks of given kind,

etc. Even if this form of programming, so to speak, by

patterns, does not solve the problem of designing a rule

(the target algorithm), at least it would help its high-level

conception, and its implementation in terms of the required

state transitions.

As a methodological note, it is worth mentioning that it

was demanding in practice to resort to computational aids

to complement the formal efforts. After all, the details

involved in rule design are so many that it is quite easy to

overlook some of them. This turned out to be essential in

the present case for fine tuning our design in its origin.

Such an interplay between formal and computational

methods also came into play (apart from all the obvious

efforts in the context of radius 3) for devising the most

compact representation of the BFO rule, as shown in the

paper, for enumerating all cycles of size 7 in the de Bruijn

graph of radius 2, and for the evaluation of the radius 2

rules that had retained potential for being perfect solvers of

the parity problem, by not violating the constraints derived

in the proof, at their various stages of development.
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