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Enhancing Peer-to-Peer Systems
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Abstract— Peer-to-peer systems can share the computing re-
sources and services by directly communicating within a widely
distributed network. It is important that these systems can
efficiently locate, in as few hops as possible, the node storing
the desired data in a large system. Thus, it is worth consuming
some extra storage to obtain better routing performance. In
this paper, we propose redundant strategies to improve the
routing performance and data availability on Chord and De
Bruijn topologies. Hybrid-Chord combines multiple chord rings
and successors, and Redundant D2B maintains successors, to
improve the routing performance. The proposed systems can
reduce the number of lookup hops significantly (by as much
as 50%) compared to the original ones, and have better fault
tolerance capabilities, with a small storage overhead.

Index Terms— P2P System, Chord, D2B, DHT.

I. INTRODUCTION

PEER-TO-PEER (P2P) systems are now one of the most
popular Internet applications and have become a major

source of Internet traffic. Thus, it is important that these
systems are scalable and can efficiently locate, in as few
hops as possible, the node that stores the desired data in
a large system. In other words, reducing the hop count is
extremely important from the cost and performance point
of view. Furthermore, nodes must be able to join and leave
the system frequently without affecting the robustness or the
efficiency of the system, and the load must be balanced across
the available nodes.

Earlier P2P systems employ a single index server or
flooding-based mechanism (Gnutella[13] and Freenet[3]) to
search desired data, which are not suitable for large systems.
Most latest P2P systems (e.g., [15], [12], [18], [14], [16], [10],
[9], [8], [7]), use distributed hash tables (DHT) to support
scalability, load balancing and fault tolerance. These systems
are based on different virtual topologies, and they all employ
a distributed hash table that maps names/keys to values and
that is used as a supporting lookup service. DHTs manage the
distribution of data among the dynamic network, and allow
nodes to contact any participating node in the network to find
stored resources by keys.

In P2P systems, the number of lookups for desired data
is significant high, which means that locating data efficiently
can save huge network communication resource. On the other
hand, with the development of computer technology, local
storage expense becomes negligible. Thus, it is worth consum-
ing some extra storage to obtain efficient routing performance.
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In this paper, our main focus is on reducing the number of
hops that are needed to locate a data item.

We present a new model for a peer-to-peer system, called
Hybrid-Chord, to improve the routing performance and data
availability of Chord[15]. Through simulations, we demon-
strate the improvement of the routing performance and fault
tolerance capabilities of the proposed system and compare
them with the original Chord system. Here are some highlights
of the Hybrid-Chord system:

• it can reduce the number of lookup hops significantly by
up to 50% compared to Chord,

• it is robust and handles node failures better than Chord,
• it can always find the desired data within few hops

with high probability and has better data availability than
Chord,

• from scalability point of view, the total joining/leaving
cost is O(log2n), where n is the number nodes in the
system, same as in Chord.

We also apply the redundant successor strategy to the D2B
system of [8] (Redundant D2B); as for the case of Hybrid-
Chord, we observe that we can significantly reduce the number
of lookups improving also data availability.

The paper is organized as follows. In Section II, we describe
various features of the proposed peer-to-peer system. Data
lookup and routing scheme are given in Section II-C. Section
II-D and II-E describe the scalability and fault tolerance
issues, respectively. All Hybrid-Chord experimental results are
provided in Section III followed by concluding remarks on
Hybrid-Chord in Section VI. In Section IV, we propose the
Redundant D2B system and describe the experimental results
in Section V.

II. HYBRID-CHORD SYSTEM

We propose a new peer-to-peer model, called Hybrid-Chord
or simply Hybrid system, which has the following two key
features: multiple chord rings overlayed one on top of the other
and multiple successor lists of constant size. The multiple
chord rings system and the successor list system could be
employed independently as a peer-to-peer model. In this paper,
we describe the hybrid system obtained by combining the two
ideas and resulting in an enhancement of Chord (more details
can be found in [17]).

A. Multiple Chord Rings

In our system we generate a virtual network by overlaying
k Chord rings one on top of the other. Our goal is to speedup
data lookup and make the system more robust. The idea is
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Fig. 1. 2-Chord topology

based on the fact that, if several Chord rings are overlayed,
one could choose, at each step of the lookup, the best Chord
ring to achieve better routing performance. Each node has
k identifiers and every identifier logically corresponds to a
location in one Chord. Each data item has a unique key and
is mapped into the same location on different virtual Chord
rings. In other words, there are k identifiers for a node, and
the node is located in k logical Chord rings with different
location. Since in each Chord, every data item owns only one
key and is located at the same location on different Chord
rings, then there are k replicas of each data item distributed in
k different nodes that are in charge of its location on different
Chord rings in the overlay network. We will often refer this
as k−Chord model.

Figure 1 shows the example of a k-Chord topology for k =
2. In this figure, every node has two identifiers (Id1, Id2),
where Id1 is the identifier in the first Chord ring and Id2 is
the identifier in the second Chord ring. For example, node 1
on the first Chord ring has identifier 3 on the second Chord
ring. Through these identifier pairs, two virtual Chord rings are
organized. On the other hand, each data item has two replicas
which are distributed in these two logical Chord rings. For
example, if a data item has key 5, then this data item is stored
in nodes with identifier pair (7, 5) and (5, 2), which means
that if any identifier of a node’s k identifiers matches a data
item’s key, this node will have a replica of that data item.

Since each data item has k replicas that are distributed in k
Chord rings, a lookup request will try to find the numerically
closest one to satisfy the query. At each hop during a lookup,
the local routing information is used to select the current
closest replica to route the request. Thus, a search may switch
from one Chord to another to speedup routing by choosing
the closest replica of the desired data item at each step.

1) Permutation of k Name Spaces: In overlaying k Chord
rings, one of the fundamental problems is how to choose the k
identifiers of each node. Assuming the size of identifier name
space is N , the nodes’ identifier name space can be expressed
as R = (r0, r1, . . . , rN−1), and we consider the name space of
the first Chord ring to be R

0 = (0, 1, 2, . . . , N −1). Thus, we
can view all the possible nodes’ identifiers on the other Chord
rings as a permutation of R

0. A well-chosen permutation
which could make routing more efficient is desirable. In the
following, we describe four simple and practical permutations
for naming functionality.

Reverse Permutation Assuming the name space of the first
Chord is R

0 = (0, 1, 2, . . . , N − 1), the permutation for the
second Chord ring can be the reverse of R

0, i.e., (N −1, N −
2, . . . , 1, 0). Thus, for any node identifier Id1 in the first Chord

ring, we can obtain the identifier in the second Chord ring
Id2 = N − 1 − Id1. This permutation, unfortunately, limits
the number of Chord rings to just two.

Shift Permutation Suppose there are k Chord rings and a
node’s name is v, we can obtain its identifier in the first
Chord ring by hashing its name: P = hash(v). Based on
this identifier, we can derive other k − 1 identifiers of this
node by adding a constant. Thus, from the entire name space
perspective, other Chord rings can be viewed as simply Chord
rings derived by shifting the original Chord ring. Let the name
space of the first Chord be R

0 = (0, 1, 2, . . . , N−1). The shift
permutation is a cyclic shift of the name space R

i = (i, i +
1, . . . , N−1, 0, 1, . . . , i−1). We can construct k-Chord system
based on k equidistance shift permutations R

0, R
N
k , R

2N
k , . . .

etc. Thus, the identifiers of node rp in the k-Chord system
will be (P, P + N

k , P + 2 × N
k , . . . , P + (k − 1) × N

k ) in the
k Chord rings.

Random Permutation Another possible approach for choos-
ing the k Chord rings is by random permutation. Based on
the first name space R

0, we can rearrange the sequence
randomly to generate a new permutation for another Chord
ring. A full mapping table is needed to keep track of complete
permutations for each Chord ring. Each node, in this case,
can get its k identifiers by querying the mapping table. It
is expensive to maintain the mapping table for each node.
In practice, we can obtain the permutations by applying a
minimal perfect hashing function to generate the k identifiers
of a node recursively. A perfect hash function is a collision-
free hash function that maps different keys to distinct integers.
A minimal perfect hash function can map different keys to
distinct integers and has the same number of possible integers
as keys, which means that n keys will map to 0..n−1 without
any collision. If a node’s name is v, we can get the k identifiers
as P1 = hash(v), P2 = hash(P1), . . . , Pk = hash(Pk−1).
In this way, the values of Pi will be different with high
probability.

Modular Permutation A modular approach can be used to
obtain permutations that can cover the name space. Assuming
that N is a prime number and m is an arbitrary integer, the m-
modular permutation is obtained by skipping m consecutive
elements, i.e., R

0
m = (0, m, 2m, 3m, . . .) mod N . Since m

and N are coprime, it is guaranteed that R
i
m = (i, i + m, i +

2m, i + 3m, . . .) mod N is a permutation of R
0. To obtain

k different Chord rings we can choose different values of m
to form k different identifier sequence permutations, where
i = 0.

2) Routing with Multiple Chords: Routing and locating a
desired data item efficiently is an extremely important criteria
in a P2P system. Chord can route to the destination node by
decreasing the distance by half after each hop. In the k-Chord
system, we leverage k virtual Chords to speedup the routing
process. Each node sets up a finger table for each Chord ring
like Chord, and maintains a k-dimensional finger table for
efficient routing.

During a lookup, each intermediate node resolves the query
and checks if the destination is located within the range of
its position and its successor on each Chord ring. If the
destination is located within one of those ranges, it finds the
desired node and just jumps to that node directly; if not, it
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applies a greedy strategy to forward the query. The greedy
strategy scans the k-dimensional finger table, finds the k
predecessors of the destination on k Chord rings, and then
chooses the node that is numerically closest to the destination
as the next hop node. Thus, the lookup jumps can switch
between the k Chords to speedup finding the closest replica
of the desired data.

We will see later that the approach of overlaying k topolo-
gies to improve performance is case sensitive. If the interval
between each hop is the same and long enough, it can
work efficiently. However, the routing algorithm of Chord
guarantees that the distance between the target and the location
of the current node will decrease by half after each hop;
with the increasing number of jumps, the distance to the
destination becomes very short, and it has little chance to
switch between the k Chords. This means that our k-Chord
model can contribute a lot in the first several hops by switching
between different Chords but does not help much in the
subsequent hops.

B. Multiple Successor Lists of Constant Length

We now describe how to combine multiple chord rings with
multiple successor lists. Chord[15] uses a successor list of
variable length to increase system robustness, and CFS[6] uses
it for data replication. In the hybrid system we propose, each
node maintains a successor list of constant size d containing
the node’s first d successors. Therefore, the total number of
successor lists is equal to the number of overlayed rings. The
successor list contributes significantly for efficient routing,
failure recovery and data replication.

1) Routing with Multiple Successor Lists: Since the Chord
routing algorithm can cut the distance to the destination by half
after each hop, the last several lookup hops may be within a
very short distance to the destination. Our idea is to use the
node’s successor list as a part of the routing table. In this
way, we might be able to avoid the last few hops by jumping
directly to the destination when it is within the range of the
successor list.

During a lookup, each intermediate node checks if the
destination is located within the range of its position and the
last node’s position in its successor list. If the destination is
located within that range, the node scans the successor list
to find the successor corresponding to the searched key and
jumps to that node directly; if not, it scans the finger table to
find the closest predecessor of the searched key and jumps to
that node to continue the query.

A key problem for this model is to choose a suitable length
of a node’s successor list that can cover a reasonable clockwise
distance from it. Chord maintains r successors for failure
recovery, and considers that r = Ω(log n) can offer good
performance. We, on the other hand, choose a constant value
for the length of the successor list. We will show that such a
choice guarantees good routing performance.

C. Data Lookup & Routing in the Hybrid System

In the hybrid system, each node maintains a k dimensional
finger table and a successor list of size d. During a lookup,
each intermediate node resolves the query and checks if the

destination is located within the range of its position and its
last successor in the successor list on each Chord ring. If the
destination is located within one of those ranges, it finds the
desired node and jumps directly to that node; if not, it applies
the greedy strategy to forward the query. The greedy algorithm
scans the k-dimensional finger table, finds the k predecessors
of the destination on the k Chord rings, and then chooses the
node that is numerically closest to the destination as the next
hop node.

The k-Chord model reduces the distance between the source
and the destination node sharply within the first few hops,
which also helps compressing the node density between the
current location and the destination. In other words, the nodes
located within the distance of the last few hops have shorter
intervals between each other, because if the distance is long
enough, the lookup of the k-Chord model may try to switch
to another Chord ring that has stored a replica much closer
with high probability.

Although the k-Chord model may not locate the destination
accurately within the remaining distance through small hops,
immediate successors as a part of the routing table solves this
problem by offering only one hop to locate the destination
directly if the destination is located within the range of
successors. The hybrid system achieves better performance
than multiple Chords or multiple successor lists alone. It is
also helpful for fault tolerance and re-routing in the event of
failures.

D. Scalability

Since each node in the hybrid model needs to maintain a k-
dimensional finger table and a successor list of size d on each
Chord ring, the size of the routing table is O(k(log n + d)),
and the joining/leaving cost is O(k(log2 n + d)). With k and
d being constant (e.g., k = 4 and d = 20), the size of the
routing table is O(log n) and the total joining/leaving cost is
O(log2 n), the same as Chord.

When a new node joins the network, it joins the k chord
rings. The newly joined node constructs the connection to its
predecessor and successor on each Chord ring, and creates
the finger table and the successor list for each Chord ring. Its
successor on each Chord ring sends back the data associated
with the keys that belong to the new node. When a node leaves,
it transfers the data to corresponding successors on each Chord
ring before it departs; it also notifies its predecessor and
successor on each Chord ring to adjust their pointers. The
successor lists of the related nodes are refreshed periodically.

E. Fault Tolerance

1) Data Replication: In the hybrid model, replicas of a data
item are stored in the same location on k different Chords
associated with its key and the d successors. The priority
of lookup for a data item is routed first to the numerical
closest destination, if the target node failed, it re-routes to
that node’s successor directly. If all d successor nodes fail,
it abandons this Chord ring, and re-routes to the numerical
closest Chords within the left valid Chords and does the same
lookup mechanism until it finds the desired data or all the
nodes storing the replicas of the data fail.
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The successor list mechanism helps data replication and
places replicas in a way that nodes can easily find them.
We adopt the same replication scheme as CFS[6] in our
model. The replicas of a data item are stored on r immediate
successor nodes of the target node that is responsible for the
keys associated with the data to increase data availability.
Naturally, the number of replicas is smaller than the length
of the successor list r ≤ d. The target node k track of its r
successors and propagates data to new replicas automatically
when it detects that successors come and go.

Since nodes’ identifiers are generated by hashing their IP
addresses, the nodes close to each other on the logical Chord
ring are not likely to be geographically close to each other.
The failures are independent and failed nodes are distributed
randomly on the Chord ring even if there are full failures of
the nodes in a particular geographical region, or all the nodes
that use a particular access link, or all the nodes that have a
certain IP address prefix.

Actually, the successor list replication scheme is robust for
both accidental failures and malicious failures based on the
preceding reasons, since an adversary may be able to make
some set of nodes fail, but has no control over the choice of
the logical Chord ring.

2) Failures: From the lookup point of view, failures fall
into two categories: random failures and target failures. Ran-
dom failures occur accidently and affect the routing procedure
on the intermediate nodes along the lookup path; target failures
occur only on the nodes that store the desired data, which
will affect the routing at the end of the lookup path. We use
different fault tolerance strategies in each case.

Random Failures: When a massive random failure occurs,
a lookup may encounter failed nodes along the lookup path.
The fault tolerance strategy in this case is to bypass the failed
nodes and continue along to reach the destination.

During each lookup iteration in Chord, every node selects,
from its finger table, the largest alive node that precedes
the target key to perform the next jump, and continues with
routing. In the k-Chord model, we have adjusted our greedy
algorithm to return the numerically closest alive node to
the destination during each hop. The algorithm scans the k-
dimensional finger table, finds the k valid closest predecessors
of the destination on k Chord rings, and chooses the node that
is numerically closest to the destination as the next hop node.
Obviously, random failures may extend the mean lookup path.

Although the system can apply the successor list to refresh
the routing table when failures happen, it will take some time
to detect and correct it. Before the remaining nodes react to the
failures, routing is performed in the same way as in Chord:
every node chooses the largest alive node that precedes the
target key from its finger table as the next jump node for the
further lookup.

Target Failures: In the k-Chord system, there are k replicas
for each data item. When the closest target node that contains
the desired data item fails, the system will redirect the query
message to another available node that has the desired data
item.

One reasonable idea for re-routing is that, when reaching
a failed target node, the query bypasses the failed node and
jumps to another location from the current position of the

same Chord based on its k-dimensional finger table, and
continues with the lookup. However, it could confront a
potential problem that it may re-route back to the failed node
or jump between failed nodes indefinitely if there are more
than one failed target nodes.

A valid but not efficient re-routing approach is that, when
reaching a failed node that contains the desired data replica in
one Chord, it will continue to look for the second closest lo-
cation ignoring the Chord that contains the failed node, which
is now considered an invalid Chord. The routing message will
contain the information on previously found failed nodes, and
the lookup hops will only switch between the valid Chords.
The obvious disadvantage of this scheme is that, as the number
of target node failures increases, the number of available
Chords decreases along with the lookup performance.

Since replicas of a data item are stored at r (r ≤ d) nodes
succeeding its key, when the node that stores this data item
fails, the lookup message can jump to its immediate successor
to look for the desired data.

3) Failure Detection & Recovery: The successor list of
a node can be used to detect and recover from failures
automatically. Those successor pointers are then used to verify
and correct finger table entries, which allows these lookups to
be fast as well as correct.

Each node checks every entry in its finger table periodically;
if there is a failure, it tries to find the failed node’s alive
successor to substitute it. As time passes, the scheme will
correct the finger table entries and the successor list entries
pointing to the failed node.

We can compare the hybrid model to Chord for the perfor-
mance of lookup when failures happen. Since all the replicas
of a data are distributed randomly from the view of the
geographic network, Chord and the hybrid system should have
the same data availability. However, because of the distinct
data replication and routing algorithm on the overlay network,
there is a little difference in their performances. Considering
the better lookup performance and the very low probability of
full linear failures of the hybrid system, the total performance
of the hybrid system is better than Chord system.

III. SIMULATION ON HYBRID-CHORD

In our experiments, the size of the circle name space is
N = 106. The number of nodes n is varied from 100 to
18,000. The n nodes are hashed by their randomly generated
IDs and distributed uniformly along the Chord ring. In each
simulation run, we choose 200 pairs of valid source nodes and
desired keys randomly. The simulation is repeated 100 times
in each case to get the average value for the length of the
lookup path (in hops).

A. Lookup Performance

1) Effect of Different Permutations & Multiple Chord
Rings: We now show the lookup performance of the k-Chord
model alone for all four permutation schemes mentioned
earlier.

Reverse Permutation The improvement (in the range 13 -
27%) in lookup performance for k = 2 is significant.
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Fig. 2. Lookup Hops for Random Permutation

TABLE I

EFFECT OF DIFFERENT m FOR MODULAR PERMUTATION, k = 2

m n = 1000 n = 5000 n = 10000 n = 15000
5 (≈ 0) 4.96 5.92 6.15 6.44

17 (≈ log N) 4.97 5.90 6.32 6.57
316 (≈ √

N) 4.97 5.87 6.08 6.54
25000 (≈ N

4
) 4.90 5.79 6.18 6.62

50000 (≈ N
2

) 5.01 5.80 6.24 6.65
75000 (≈ 3N

4
) 4.92 5.82 6.29 6.49

99000 (≈ N) 4.96 5.81 6.23 6.61

Shift Permutation We get a significant performance im-
provement for k = 2, with the overall improvement in the
range 18 - 27%. When k ≥ 5, the improvement is insignificant.
Note that all the jump switches happen only in the first hop
of each lookup. This approach can be viewed as k replicas of
each data item distributed uniformly on one Chord ring.

Random Permutation The performance of the random per-
mutation (see Figure 2) is better than that of the shift per-
mutation. A performance improvement between 23 - 32% is
achievable depending on the value of k. As we can observe,
most switches happen within the first three hops for each
lookup. When k = 2, the average improvement is about 1.1 to
1.4 hops compared to Chord(k = 1) for each lookup. When
k > 2, the average improvement is only about 0.5 hop with
increase in k.

Modular Permutation For this permutation, we chose a big
prime number which is close to 105 as the size of the
name space. Here, N is 100003, and different values for
m are chosen from the range (0, 100000). To see what is
the best choice for m, we chose different values for m as:
m ≈ (0, log N,

√
N, N

4 , N
2 , 3N

4 , N) and varied n from 1000
to 15000 (see Table I).

In this particular case, we chose k = 2 because there
is a substantial improvement when k = 2 in comparison
with Chord (i.e. k = 1). In fact, the average improvement
is about 0.8 to 1.3 drop in hops for k = 2. However, the
drop becomes less and less significant as k is increased. The
improvement is still good up to k = 4. It is very interesting to
notice that the choice of m does not have a significant impact
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Fig. 3. Lookup Hops in Successor List of Different Sizes

on the performance of data lookup in the case of modular
permutation. Since different m gives similar performance,
we randomly chose m for the experiments. We can see the
performance improvement between 22 - 32% depending on k
and the total number of nodes n.

In summary, the experiments show that the reverse per-
mutation has the best performance for k = 2; the random
permutation scheme offers a good routing performance, and
the modular permutation scheme can accomplish similar per-
formances.

The experiments on the four permutation schemes indicate
that the lookup path length decreases with the increase in
the number of overlayed Chord rings. However, the overhead
associated with maintaining k rings also increases with k.
Therefore, we need to find a trade-off between the perfor-
mance improvement and the increasing overhead. The results
(Figure 2) show that when k varies from 1 to 2, the lookup
performance improvement is very much significant. After that
the improvement slows down. When k ≥ 5, the improvement
becomes insignificant. Thus, k = 2, 3 or 4 can be a very good
choice. If nodes join and leave the network frequently, the
performance improvement for k = 2 will certainly outweigh
any extra overhead; however, if the network does not change
significantly, k = 4 appears to be the best choice.

2) Effect of Length of the Successor List: We now show
the lookup performance of the successor list model alone
varying the length of the list. In the experiment, the length
of the successor list (d) is varied from 1 to 25. The n nodes
are hashed by their random generated IDs and distributed
uniformly on the Chord ring. We can see from Figure 3
that we can achieve a significant improvement in the lookup
performance for d up to 10. When d > 20, the performance
improvement becomes considerably insignificant. Overall, an
improvement in the range of 26 - 40% is possible depending
on d and n.

The routing performance improves as we increase d, but
the overhead also increases at the same time. We, therefore,
need to find an optimal value of d. When d > 20, there is not
much improvement because of the overhead which seems to



20 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1

2

3

4

5

6

7

8

9
Hybrid−Chord Routing (k=2)

Number of Nodes

A
ve

ra
ge

 N
um

be
r 

of
 L

oo
ku

p 
H

op
s

d=1
d=5
d=10
d=15
d=20
d=25

Fig. 4. Lookup Hops for the Hybrid System for k = 2

indicate that d = 20 is a good choice. In the following, we
give an intuition of why d = 20 is a good choice in our setting.
Assume that the size of the ring name space is 100,000, and
the number of nodes is 10,000. Through hashing function, all
10,000 nodes can be distributed uniformly on the ring, which
means the interval of two neighboring nodes is about 10. Thus,
10 ∼ 15 successors of a node can almost cover the distance
of about 100 ∼ 150 possible nodes close to it. The distances
of the node’s finger nodes are about 20, 21, ...., 2i, ..., 2log N ;
when i = 7, the distance is 128 (when i = 8, the distance of
28 = 256 will require at least 26 successors in the ideal case),
and i < 4 will be covered by the first successor. So 4 (=7-3)
hops distance may be covered by the successor list with the
length of 10 ∼ 15. However, in real system, each hop can
at least reduce the distance to the destination by half, so the
simulated result is that, in most of the lookups, the last 2 ∼ 5
hops can be merged into one hop by successor list routing.
Under this model, assuming the length of the successor list
d = 20, we expect to see 1 ∼ 2 drop in the average lookup
hop.

3) Lookup Performance of Hybrid-Chord: We now con-
sider the hybrid system. From the lookup performance per-
spective, we study:

• the effect of the length of the successor list on the lookup
performance for a fixed number of overlayed Chord rings.
The number of Chord rings was fixed at k = 2, and the
successor list length d was varied from 1 to 25 in our
experiment,

• the effect of the number of Chord rings on the lookup
performance for the successor list of an ideal length. The
successor list length was fixed at d = 20, and the number
of Chord rings k was varied from 2 to 7 with random
permutation used in naming.

With k = 2, we obtain a lookup performance improvement
(Figure 4) in the range 30 - 50%. Similarly for d = 20, the
improvement (Figure 5) is in the range 38 - 53%, which is
very significant. Therefore, k = 2, d = 20 seems to be a good
combination for the hybrid system.
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Fig. 5. Lookup Hops of the Hybrid System for d = 20

TABLE II

EFFECT OF DISTRIBUTION DENSITY ON THE HYBRID SYSTEM (d = 20)

N k = 1 k = 2 k = 3 k = 4
20000 5.26 4.34 4.06 3.87
50000 5.31 4.33 4.03 3.99
100000 5.38 4.49 4.11 3.91
1000000 5.41 4.58 4.25 4.01
10000000 5.48 4.70 4.31 4.10

B. Effect of Distribution Density

In Chord, the nodes are distributed uniformly along the
Chord ring; hence, the lookup performance depends only on
the number of nodes in the network, which means that if
n is fixed, the node density has little effect on the routing
performance. We will see that this is also true for the hybrid
system.

In our simulation, the number of nodes is fixed (i.e., n =
104), the size of the name space N is varied from 20000 to
107, the number of Chord rings k is varied from 1 to 4 and the
length of the successor list is fixed (i.e., d = 20) as shown in
Table II. The experiment indicates that the lookup path length
increases very little with N for each value of k. We, therefore,
conclude that under uniform node distribution, the routing cost
of the hybrid system depends mostly on the number of nodes
(n) in the system and not on the size of the name space (N ).

C. Effect of Simultaneous Node Failures

After a node in the hybrid system fails, some time will pass
before the remaining nodes react to the failure, by correcting
their finger tables and successor pointers and by copying
replicas to maintain the replication. The hybrid system is
able to perform lookups correctly and efficiently before this
recovery process starts, even in the event of massive failure.

To test that, 1000 data items were inserted into a 1000-node
system, each data item having 6 replicas. For k = 2, d = 20,
a fraction p (varied from 10% to 50%) of all nodes were
randomly chosen as failure nodes. After that, we performed
10000 random lookups. For each lookup, we recorded if
the lookup was a success and if it was, we calculated the
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TABLE III

HYBRID AND CHORD LOOKUP FAILURE RATE

p(fraction of failure) 20% 30% 40% 50%
Chord (k = 1, r = 6, d = 20) 0 0.002 0.010 0.016
Hybrid (k = 2, r = 3, d = 20) 0 0 0.009 0.014

TABLE IV

HYBRID AND CHORD LOOKUP PATH LENGTH FOR FAILURES

p(fraction of failure) 10% 20% 30% 40% 50%
Chord (k = 1, r = 6, d = 20) 6.0 6.2 6.5 6.8 7.2
Hybrid (k = 2, r = 3, d = 20) 3.5 4.1 4.8 5.6 6.6

lookup path length. We then derived statistics of the lookup
success rate and the average lookup path length (only for the
successful lookups).

Table III shows the lookup failed rate when the failure
fraction p varies from 10% to 50%, and the number of the
successors r that store the data replicas. The size of the
successor list is d = 20 in both systems. The result shows
that our hybrid system can always find the desired data with
high probability, and has a similar data availability as Chord.
Table IV shows the average lookup path length when failures
occur. The result indicates that the our hybrid system has better
lookup performance when failures occur. Based on the above
observations, we can claim that our hybrid system outperforms
the Chord in handling node failures.

Chord considers that if the successor list has length d =
Ω(log n), both the success rate and the performance of Chord
lookups will not be affected even by massive simultaneous
failures. Furthermore, it has been shown that, if the successor
list of length d = Ω(log n) and every node fails with
independent probability 1/2, the system can find the closest
living desired node and the expected lookup time is O(log n).
However, with the evolution of the network, a node cannot
know the exact number of nodes existing in the network
at a certain time. More practically, in our model we use a
reasonable constant number (d = 20) as the length of the
successor list. Assuming the independent failure probability
of a node is 1/2, the full failure for a successor list is (1

2 )20

which is very small. It means that the data items are always
available with high probability.

The correctness of lookup scheme relies on the fact that
each node knows its successor. Failure nodes will result in
incorrect successor pointers, and incorrect successor will lead
to incorrect lookup. To increase robustness, in the same way
as Chord, each node maintains a successor list of size d,
containing the node’s first d successors. If a node’s immediate
successor does not respond, the node can substitute the second
entry in its successor list. All d successors would have to
simultaneously fail in order to disrupt the Chord ring, an
event that can be made very improbable with modest values
of d. Assuming each node fails independently with probability
p, the probability that all d successors fail simultaneously
only pd. Increasing the size d of successor list can strengthen
system robustness.

IV. REDUNDANT D2B

One of the latest trends in P2P system design focuses
on maintaining constant degrees to achieve efficient routing

performance. Some latest distributed hash table based P2P
systems ([9], [8], [11], [1]) use the De Bruijn graph to
construct P2P overlay networks with constant degrees and
can achieve O(log n) routing performance. In this section, we
propose a variation of the D2B system [8], which improves the
lookup performance and data availability while maintaining a
small degree.

A. Overview of De Bruijn Graph

We first briefly describe the De Bruijn Graph, which is the
basis of D2B, and of our variation.

A De Bruijn graph B(d, b) is a directed graph whose
nodes are all strings of length b on the alphabet {0, . . . , d −
1}, and there is an edge form any node x1x2 . . . xk to
the d nodes x2 . . . xkα, for α = 0, . . . , d − 1. B(d, b)
has db nodes, in-degree and out-degree d, and diameter
b. In the following, we will consider boolean alphabets,
that is d = 2. Routing from x1 . . . xb to y1 . . . yb is
achieved by following the route x1 . . . xb → x2 . . . xby1 →
x3 . . . xby1y2 → . . . → xby1 . . . yb−1 → y1 . . . yb. For
example, if it routes from 000 to 111, the route is 000 →
001 → 011 → 111. A shorter route is obtained by looking
for the longest sequence that is suffix of x1 . . . xb, and
prefix of y1 . . . yb. If there is such a sequence xi . . . xb =
y1 . . . yb−i+1, then the shortest path from x1 . . . xb to y1 . . . yb

is x1 . . . xb → x2 . . . xbyb−i+2 → x3 . . . xbyb−i+2yb−i+3 →
. . . → xi−1 . . . xbyb−i+2 . . . yb−1 → y1 . . . yb. For example,
if we want to route from 111000 to 000111, the path is
111000 → 110001 → 100011 → 000111.

Routing is very simple in a complete De Bruijn graph. The
D2B system aims to maintain a dynamic De Brujin graph
to create a P2P topology where routing is still simple and
efficient.

B. Redundant D2B

In D2B, there is no fault tolerance. For a specified start node
and a key, the lookup path is unique. If a node in the lookup
path fails, that lookup process is unavailable, furthermore, all
lookup paths through that node are unavailable. In this section,
we propose a variation that incorporates fault tolerance while
improving the lookup performance.

Let us call i−successors of a node x, the set of nodes that
x can reach in i hops or less. Clearly in a full De Bruijn, each
node has two 1-successors and 2i i-successors.

Similar to Hybrid-Chord, we maintain a successor list for
each node in the D2B system to improve the routing perfor-
mance and data availability. Since the number of successors
is exponentially increasing and we want to keep the degree of
the system small, we propose to maintain a list of successors
of constant length. In this paper, we have studied the cases
i = 2 and i = 3 and have observed substantial improvements
in routing, data replication, and fault tolerance. Node joining
and leaving is managed exactly in the same way as in D2B.
Routing proceeds in a similar way, exploiting the additional
connections.

Successor Routing. In our variation, routing proceeds in
a similar way as in the D2B system, where the additional
links are used as “shortcuts”. In other words, for each hop a
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Fig. 6. The Successor Routing in D2B

message is forwarded in a greedy way to the node closest to
destination. In doing so, a message can “skip” k− 1 nodes in
its original routing path if k successors are kept (an exception
is the last hop, which may allow to skip a variable number of
nodes between 0 and k − 1, depending on the location of the
target node). If the D2B routing performance is P , then the
improved D2B can achieve 1

kP routing performance.
Figure 6 shows the sample routing for the improved D2B

system, k = 2, which means each node will maintain a set
of 2-successors; the number of out-going link for each node
is then 21 + 22 = 6. Assume there is a lookup initiated from
the node with label “000000”, and the destination node is
“111111...”. The original routing would forward the request
in 5 hops. In successor routing, each node is connected also
to the nodes that it can reach at distance 2, and can forward
the request to the successor closest to the destination. Thus,
compared to the original routing, one node will be skipped
at each hop, which means close to half of the nodes in the
original lookup path are skipped in total, and the final number
of lookup hops is 3.

Since it appears that small successors’ distances can sig-
nificantly improve the performance, and since increasing the
distance of successors leads to exponential increase in the
number of successors (and thus of the network’s degree), we
have decided to perform experiments with 2-successors and
3-successors only. As we will see, the results are quite good;
in fact, we have improvements in performance maintaining a
small degree.

Data Replication. The successor list mechanism also helps
data replication and places replicas in such a way that nodes
can easily find them. The replicas of a data item are stored
on r, r ≤ k level immediate successor nodes of the target
node that is responsible for the keys associated with the data
to increase data availability. The target node k track of its r
successors and propagates data to new replicas automatically
when it detects that the successors come and go.

Because nodes’ identifiers are generated by hashing their
IP addresses, the nodes close to each other on the logical
De Bruijn graph are not likely to be geographically close to
each other. The failures are independent and failed nodes are
distributed randomly on the network even if there are full
failures of the nodes in a particular geographical region, or
all the nodes that use a particular access link, or all the nodes
that have a certain IP address prefix. Thus, the system has
high data availability with high probability.

System Recovery. The successors of a node can be used
to detect and recover from failures automatically. Each node
will periodically send messages to check if any of its neighbors
(all successors and predecessors) fails, and try to recovery the
failure.

Fault Tolerance. Consider first the case of random failures.
Although the system can apply the successors to refresh the
routing table when failures happen, it will take some time to
detect and correct it. Before the remaining nodes react to the

TABLE V

ROUTING PERFORMANCE FOR D2B, K=1

n log n Max Min Average Chord
1000 10 12 1 8.2 5.2
2000 11 12 1 9.3 5.8
5000 12.3 18 1 10.6 6.7
10000 13.3 15 4 11.6 7.2
15000 13.8 14 1 12.1 7.5
20000 14.3 16 1 12.6 7.7

TABLE VI

ROUTING PERFORMANCE FOR REDUNDANT D2B, K=2

n Max Min Average D2B Successors
1000 6 0 4.4 8.2 6.5
2000 6 1 4.8 9.3 6.4
5000 7 1 5.4 10.6 6.8
10000 8 1 6.01 11.6 6.7
15000 8 1 6.4 12.1 6.3
20000 8 1 6.58 12.6 6.5

failures, routing is performed in the same way, except trying
to bypass the failed node. In the case of target failures, since
replicas of a data item are stored at the nodes succeeding its
key, it can jump to its immediate successor to look for the
desired data efficiently when the node that stores this data
fails. If all the direct successors fails, it continues with the
next successor until the data is found or the list of successor
is exhausted.

V. SIMULATION FOR REDUNDANT D2B

A. Routing Performance of D2B

In the simulation, nodes join the D2B network one by one,
until the number of nodes is n. Then, the system is considered
steady. We randomly choose 1000 pairs of the source node and
m-bits target key string and simulate the lookup experiment.
We then compute the average hops for each lookup. The
results in Table V indicate that the routing performance of
D2B is worse than that of the Chord. The average number of
lookup hops is smaller than log n, but greater than that in the
case of Chord. The average number of lookup hops stabilizes
after about 10 iterations of testing.

B. Routing Performance of Redundant D2B

The simulation conditions are the same as in D2B. The
results for k = 2 and k = 3 are shown in Tables VI and VII.
Since D2B is not a perfect De Bruijn topology, the number
of each node’s out-degree is variable and depends on the
dynamics of insertions and removals. The tables also show
the average number of out neighbors of each node.

As expected, the results suggest that the number of lookup
hops is in the order of 1

k log n. The experiments also show
that the average number of successors is about

∑k
i=1 2i

(for example, for k = 3, the number of the successors is
about 16). Compared to Chord, we can observe that the the
Redundant D2B has better performance. Note that the number
of successors is independent of the size of the network n.



FLOCCHINI et al.: ENHANCING PEER-TO-PEER SYSTEMS THROUGH REDUNDANCY 23

TABLE VII

ROUTING PERFORMANCE FOR REDUNDANT D2B, K=3

n Max Min Average D2B Successors
1000 5 1 3.0 8.2 16.1
2000 5 0 3.45 9.3 15.7
5000 5 1 3.85 10.6 16.1
10000 5 2 4.3 11.6 16.3
15000 6 1 4.42 12.1 16
20000 6 1 4.54 12.6 15.9

TABLE VIII

LABEL LENGTH OF A NODE

n log n Longest Shortest Average
1000 10 13 8 10.25
2000 11 14 9 11.2
5000 12.3 16 9 12.6
10000 13.3 17 11 13.6
15000 13.87 17 11 14.1
20000 14.3 18 12 14.5

C. Observations about D2B

In this section, we make some observations that apply to
both D2B and our variation.

Balance. A balanced network would guarantee that the
keys/data are distributed uniformly by the key distribution
rules of D2B. An interesting question is whether a dynamic
De Bruijn network, as described in D2B, is balanced after
joining n nodes. We consider the network balanced if the size
of the labels of each node is close to log n (which would be
the length of the node’s label in a complete De Bruijn). In the
experiment, we have randomly generated a 32-bits temporary
label for a node’s joining and we have reported the results
in Table VIII. It can be seen that the average length of node
labels is very close to log n. However, the difference between
the longest and shortest length is not small.

Constant Degree. Another interesting experiment is to
observe the behavior of the degree for the dynamic De Bruijn
of D2B. In the complete De Bruijn, each node has two parents
(in-degree) and two children (out-degree). However, in the
incomplete D2B, one node may have a variable number of
children. Thus, we want to know the average degrees for the
nodes for a certain n, where n is the number of nodes in
the network. We need to verify if the size of each node’s
routing table is still constant. Table IX shows that, although
the maximum number of in-degree and out-degree is larger
than 2, the average in-degree and out-degree is very close to
2, and this value is independent of the size of the network.
Thus, we can conclude that the size of routing table is constant.

VI. CONCLUDING REMARKS

Distributed hash tables are proving to be a useful foundation
for more complex distributed applications. They provide a ro-
bust and scalable approach to the problem of content distribu-
tion and can be used to offer fault tolerance capabilities to P2P
applications. Most recent research on P2P have focused on
achieving efficient routing performance with constant degrees.

Our paper presents redundant P2P systems to improve
the routing performance and data availability. In particular,
we have studied a variation of Chord (Hybrid-Chord) and a

TABLE IX

AVERAGE DEGREES OF A NODE

n out in max out min in
1000 2.12 2.12 12 6
2000 2.11 2.11 13 7
5000 2.13 2.13 20 10
10000 2.12 2.12 19 9
15000 2.12 2.12 17 9
20000 2.12 2.12 16 11

TABLE X

AVERAGE LOOKUP HOPS AND ROUTING TABLE SIZE FOR DIFFERENT

SYSTEMS

n Chord Hybrid Chord D2B Redundant D2B
hops size hops size hops size hops size

1000 5.2 10 2.5 60 8.2 2.12 3.0 16.1
2000 5.8 11 3.1 64 9.3 2.11 3.45 15.7
5000 6.7 13 3.4 69 10.6 2.13 3.85 16.1
10000 7.2 14 3.9 73 11.6 2.12 4.3 16
15000 7.5 14 4.1 75 12.1 2.12 4.42 16.3
20000 7.7 15 4.3 77 12.6 2.12 4.54 15.9

variation of D2B (Redundant D2B). Both variations use the
idea of maintaining a successor list to improve the lookup
performances, as well as fault tolerance and availability. From
our experiments, it emerges that using a small extra storage
to keep the routing information about the successors allows
us to obtain substantial improvements. The following table
summarizes our results comparing them with the Original
Chord and D2B, where Hybrid Chord with k = 4 and d = 20,
and Redundant D2B with k = 3.

Related Work. Several variations of Chord have been
proposed in the literature. In F-Chord[4], for example, the
distances between the chords follows the Fibonacci sequence;
in this way the authors show that the average number of
hops for lookups decreases while the size of the routing table
remains the same. In [5] similar improvements are obtained by
adding an extra random chord to each node. Another variant
of Chord is described in [2] where an overlay topology with
multiple chord rings (called DKS) is introduced to improve
routing performance. In DKS, the specified key is stored in a
certain node. At the beginning of the search, the search space
is equal to the whole identifier space. At each step of the
search, the current search space is divided into k equal parts.
Each part is under the responsibility of a well chosen node.
This partitioning of the search space is repeated until the k
equal parts contain an element each. This procedure can be
viewed as searching on multiple Chord rings, and each ring
owns 1

k part of the former ring. The partitioning of the search
space leads to an improvement in lookup performances.

In the literature, there are several P2P systems based on
the De Brujin graph (e.g., see Koorde [9] and D2B [8]).
Koorde and D2B differ in the sense that Koorde uses the
same key-space as Chord where a key κ ∈ [0, 2m−1] induces
connections to positions 2κ mod 2m and 2κ + 1 mod 2m,
whereas, in D2B, a node’s label is a prefix of its managed
keys.
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