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ABSTRACT

Sense of direction is a property of the edge-labeling of a network whose availability
facilitates computations and often decreases their complexity. In this paper we consider
the problem of providing a sense of direction to an anonymous, unoriented torus. The
edges of the torus are initially labeled arbitrarily, and they have to be relabeled with a
classical compass sense of direction.
We first describe an algorithm where the relabeling of the edges is performed by a mobile
agent that carries a token. The algorithm is optimal both in terms of number of tokens
(with no tokens the task cannot be performed), and in terms of number of moves. We

then show that the same technique can be used to orient the torus in the classical
message-passing environment, thus obtaining an orientation algorithm that improves all
the existing ones in this setting.

1. Introduction

1.1. The Problem

Sense of direction is a particular way of labeling the edges of a network that

has been defined in [17], and has been extensively studied since then from different

perspectives (graph theory, communication networks, theoretical computer science)

(e.g., [9, 8, 4, 18, 19]). Among other results, it has been shown that having a

sense of direction in a network is extremely important both from computational

and complexity points of view; for example, it has been shown that when a network
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has sense of direction, several problems can be solved more efficiently, while others,

which would be unsolvable otherwise, become solvable (e.g., see [16, 18, 26]).

Given the importance of sense of direction, an obviously interesting problem

is its construction in a network that is initially labeled arbitrarily (this problem

is sometimes referred to as the orientation problem). In classical message-passing

distributed settings the orientation problem has been extensively studied (e.g, see

[3, 11, 27, 22, 23, 29, 28, 30]). Typically, the works in the literature concentrate on

specific topologies (e.g., the ring), whose edges are initially labeled arbitrarily, and

determine distributed algorithms for relabeling the edges so to obtain an orientation

(or a sense of direction): for example, a left/right labeling in the case of the ring.

Depending on the assumptions on the system (anonymity versus distinct Ids for

the nodes, presence of a leader, knowledge of the size of the network, etc.) various

algorithms have been proposed and compared.

In mobile agents’ environment, the orientation problem has never been directly

addressed; it is however closely related to the widely studied Map Construction

problem (e.g., see [2, 5, 12, 13, 14, 20, 24]). In the map-construction problem an

agent has to traverse the network and to reproduce, in its local memory, an edge-

labeled map isomorphic to the graph it is moving on. Once the map is constructed,

the agent could easily relabel the edges according to a sense of direction.

In this paper we are interested in constructing a compass labeling of an anony-

mous Torus. The torus has anonymous nodes and its links are labeled according to

an arbitrary local orientation (e.g., every node has four distinct labels for its four

incident links); at the end of the computation the torus must be labeled with a

compass sense of direction. The relabeling must be performed by a single mobile

agent that moves from node to node. As in the classical works on Map Construc-

tion, we assume the agent has a token that can be placed on a node or removed

from it and no other means to mark the nodes of the network while moving around

(Token Model). From our technique we then derive a distributed algorithm for the

message-passing setting that has a better bit complexity than the existing solutions.

1.2. Related Work

Studies on Map Construction of edge-labeled graphs (or digraphs) by an agent,

have emphasized minimizing the cost of exploration in terms of either the number

of moves (edge traversals) or the amount of memory used by the agent (e.g., see

[2, 12, 13, 24]). Map construction of anonymous graphs is possible only if the agent

is allowed to mark the nodes in some way; except when the graph has no cycles (i.e.

the graph is a tree [14, 20]). For exploring arbitrary anonymous graphs, various

methods for marking nodes have been used by different authors. Bender et al. [5]

proposed the method of dropping a token on a node to mark it, and showed that any

strongly connected directed graph can be explored using just one token if the size

of the graph is known, and using O(log log n) tokens, otherwise. Dudek et al. [15]

used a set of distinct markers to explore unlabeled undirected graphs. Yet another

approach, used by Bender and Slonim [6] was to employ two cooperating agents,

one of which would stand on a node, thus marking it, while the other explores new
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edges. The whiteboard model (i.e., nodes have locally available a whiteboard where

information can be written and read by the agents) has been used by Afek at al. in

[1] and more recently by Fraigniaud et al.[21] for exploring directed graphs and by

Fraigniaud et al. [20] for exploring trees.

The Orientation problem has been extensively studied in message-passing dis-

tributed settings (not supporting mobile agents) (e.g, see [11, 3, 27, 22, 23, 29, 28,

30]). In particular, the orientation for torus has been studied in [23, 27, 29, 30]. In

[27, 29] the problem was examined in the different context of self-stabilization. In

the case of [30] a m × n torus is oriented exchanging O(N log N) messages (where

N = m × n) when the nodes have distinct Ids and there is no Leader, and O(N)

when there is a Leader; in the case of [23] the orientation is achieved exchanging

O(N) messages regardless of the presence of the leader, as long as the nodes have

distinct Ids. All algorithms in [23] and [30] exchange messages of O(log N) bits,

as a consequence the linear message algorithms actually have a bit complexity of

O(N log N).

1.3. Our Results

As mentioned above, a problem related to ours is the Map Construction problem.

The two problems are not exactly the same, since in our case the network topology

is known, and to be determined are its size and its initial labeling. Once the mobile

agent determines dimensions and labeling of the torus, it can relabel it according

to a compass sense of direction.

As observed above, in the token model the map of an arbitrary anonymous

graph can be constructed using a constant number of tokens only if the size of the

graph is known; otherwise more tokens are necessary [5]. An interesting question is

for what classes of graphs a single token is sufficient to construct the edge labeling

when the size of the graph is not known. In this paper we address this question by

showing that, in the case of the torus, one token is indeed sufficient; we then design

an algorithm that is also optimal in terms of number of moves. More precisely, we

consider a n × m Torus. The torus is anonymous, i.e., the nodes are all identical

and cannot be distinguished. Furthermore, the torus is not oriented, i.e., the links

incident to each node are labeled with four distinct labels, but not with a consistent

compass. The agent is located in an arbitrary node of the torus (the homebase) and

can move asynchronously from node to node (i.e., the time it takes for the agent to

move on a link is finite, but otherwise unpredictable); the agent knows the network

is a torus but does not know its size. Moreover, the agent can carry one or two

tokens that can be dropped on and picked up from the nodes of the network. In this

model the agent has locally available enough memory to store information about the

network while moving around. The efficiency of our solutions is measured in terms

of number of moves performed by the agent. We first describe a simpler algorithm

for constructing the edge-labeling of the torus when the agent has available two

tokens. Essentially one token is used for detecting termination, while the other is

used to actually construct the map. The algorithm is optimal in terms of number of

moves, which are O(N). We then modify this solution to adapt it to the situation
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when only one token is available. In this case, we do use the single token both to

construct the labeling and to check for termination. This solution is both move-

optimal and token-optimal since without a token the map cannot be constructed.

Once the agent has a labeled map of the torus, it can relabel it according to a

compass labeling in O(N) additional moves.

A technique that derives from the previous result can be applied in the message-

passing model where we can then design a distributed algorithm for orienting the

torus that exchanges O(N) messages of constant size. Notice that O(N) solutions

already exist (see [23, 30]). However, in both of them, the size of the message is

O(log N) bits, resulting in an overall bit complexity of O(N log N). Moreover, in

the algorithms of [23, 30] either the nodes must have distinct Ids to start with, or

these Ids have to be pre-computed. This implies that the nodes of the torus must

have at least a space of log N bits to store this information. With our solution

we do not require the pre-computation of distinct names for the nodes, which can

remain anonymous until the end of the algorithm. Thus, with our algorithm the

only space required at the nodes is the space to store the four labels associated to

the incident edges, which is constant.

2. The Models and their Relationship

In this section we describe the computational models considered in the paper

and related models. We also make some simple observations about the relationship

between them.

Message-passing. A message-passing distributed environment consists of a finite

collection of computational entities (the nodes) connected by communication links

(the edges) that communicate by means of messages [25]. Each entity is endowed

with local memory and has the following computational capabilities: it can access

(storage and retrieval) the local memory, has local processing, and can send and

receive messages.

At each time during the algorithm an entity x is in one state among a finite

possible set of states and its behaviour is reactive: x only responds to external

event (for example, to the arrival of a message) by executing a set of actions (and

possibly changing state). A particular type of event is the Spontaneous event that

triggers the initiator(s) of the computation. The main complexity measure for

evaluating the performances of a distributed algorithm is message complexity: i.e.,

the total number of messages exchanged by the nodes during the computation. A

more precise measure of communication is bit complexity, where the total amount

of information exchanged is taken into account (number of messages and their size).

Mobile Agents. While the model of a message passing distributed environment

has been widely studied and precisely defined, the mobile agents computational

model has never been formalized precisely. In a mobile agent environment the

nodes are passive entities, while the agents move from node to neighbouring node
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performing computations. Agents have some local memory they carry with them.

In this setting two models that are often employed are the following:

• Whiteboard Model. The nodes have a finite amount of storage (typically of

size O(log N)) where agents can write and read. Whiteboards are accessed in

mutual exclusion. When multiple agents are operating in the network, they

can use the whiteboards to communicate to each other. If a single agent is

present, it can use it to mark the nodes or write topological information. The

whiteboard model has been used for exploration purposes, for example, by

[1, 20, 21].

• Token Model. Each agent has one or more tokens that carries with itself. A

tokens can be placed on a node or removed from it, and an agent can detect

the presence of a token at a node. Each node has a small storage area (one bit

only) to be able to contain one token. When multiple agents are operating in

the network, they can use the tokens for communication or synchronization

purposes. If there is a single agent, tokens allow it to mark nodes. When

there are k tokens available for each agent, we call this model k-Token Model.

Typically the effort is to design solutions for the 1-token model, when possible.

The token model is a “classical” model that has been extensively studied and

employed especially for exploration purposes (e.g., see [5, 13, 24]). The main

reasons for the attention that has been given to this model is that it allows

to see what problem can be solved with minimal marking capabilities to the

agents and minimal memory at the nodes.

As mentioned above, typically the whiteboards have size of at least O(log N)

(where N is the number of nodes of the network); this implies that any algorithm

in the token model that uses less than log N tokens can be easily simulated in the

whiteboard model (where the whiteboard is obviously used to store tokens). Thus

we have:

Theorem 1 Any algorithm in the Token Model that uses less than log N tokens per

agent can be simulated in the Whiteboard Model, with whiteboards of size O(log N).

The reverse is not true, in fact:

Theorem 2 The O(1)-Token model is strictly weaker than the Whiteboard Model

with whiteboards of size O(log N).

Proof. We show that here exists problems that cannot be solved in the O(1)-token

model, but can be solved with whiteboards of size O(log N). This is the case,

for example, of the Map Construction problem which, in certain graphs, has been

shown to be unsolvable using a constant number of tokens (see [5]). In the same

paper it is shown that O(log log n) tokens are sufficient. By Theorem 1 we have

that the problem can be solved in a whiteboard model with whiteboards of size

O(log N). 2

It is interesting to observe the relationship between the computability power

of the message-passing model and the one of the mobile agents model. It is quite

obvious to see that:
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Theorem 3 [4] Any mobile agent algorithm in the Whiteboard Model can be sim-

ulated by a distributed algorithm in a message-passing system system.

More involved is the reverse:

Theorem 4 [10] Any distributed algorithm in a message-passing system can be

simulated by a mobile agents’ algorithm in the Whiteboard Model, with whiteboards

of unbounded size.

Essentially the messages exchanged in the distributed algorithm are carried by

the mobile agents and the actions they would trigger in the message-passing system,

are executed by the agents in the simulation. For the simulation to be possible, the

whiteboards are heavily used to contain messages to be delivered and actions to be

executed. In conclusion, the message-passing model and the whiteboard model are

computationally equivalent (when the whiteboards are big enough). The typical

complexity measure for the message passing setting (number of messages) would

correspond to the number of moves performed by the agents in the mobile agents

setting.

Since the O(1)-token model is weaker than the whiteboard one, the equivalence

with the message passing setting obviously does not hold.

3. Orientation by the Mobile Agent

Let us first summarize the model’s assumptions.

A single agent is placed on a node of the torus. The agent knows it is on a

torus, the size of the torus is however unknown. The agent has a local memory

where it will draw a labeled map of the torus; in order for the agent to perform the

task, we assume the local memory is large enough to contain the final map. Notice

that this assumption gives the agent an upper bound on the size of the torus; such

an information is however not useful to compute the map more efficiently. The

agent has also one (or, in some cases, two) tokens that can be placed on nodes or

removed from them. The network is anonymous (i.e., all nodes are identical), and

links adjacent to a node are identified with distinct port numbers, which however

do not give any particular orientation.

3.1. Optimal Algorithm Using Two tokens

In this subsection we consider the case when the agent has available two identical

tokens. In this case, we design an optimal algorithm that constructs the labeled map

in O(N) moves (where N = n×m is the size of the torus). In the next subsection we

will modify the technique to obtain the same result reducing the number of tokens.

The Algorithm. The idea of the algorithm is to first construct the labelings of a

column and of a row intersecting at the home base, and then to complete the map

by incrementally constructing all the other rows and the other columns.

During the algorithm, one of the tokens is always kept at the homebase, while

the second token is used by the agent to move around the torus. More precisely,
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while constructing a column (or a row), the agent uses the second token to move in

a straight direction to construct a column (row).

Before describing in details the idea of our solution, we introduce some termi-

nology. We call expansion of node x the action of the agent of visiting all the nodes

at distance smaller then or equal to two from x (i.e., visiting the neighbourhood at

distance two). We call d-expansion of node x (1 ≤ d < 4) the action of visiting the

nodes at distance smaller than or equal to two from x passing only through d of

the four neigbhours. When we talk about a d-expansion of a node, we will specify

through which of the four neighbours it is performed. The high level description of

the algorithm is given below in Figure 1.

Protocol Construct Map from X0 (the homebase)
Release a token at X0, the homebase.
construct column(X0)
(* the column is composed by nodes X0, X1, . . . , Xn−1 *)

back at X0

construct row(X0)
(* the row is composed by nodes X0, Y1, . . . , Ym−1 *)

go to X1, i:=1
While not back at homebase do

select row direction
construct row(Xi)
i:=i+1

end-while
go to Y1, i:=1
While not back at homebase do

select column direction
construct column(Yi)
i:=i+1

end-while

Figure 1: Protocol Construct Map.

First Column and Row. The idea is as follows: from the homebase (let us

call it X0), the agent releases its first token marking its starting node; it chooses

an arbitrary direction which determines the direction of movement, it then moves

on that link reaching a node (call it X1). Node X1 is the next node in the column

that the agent is trying to traverse, the agent starts drawing the column in its local

memory. At this point, the agent has to find the next node in the column.

Notice that, the next node to be included in the column is the one, out of the

three “candidate” nodes that are adjacent to X1, that would not be visited in the

3-expansion of X0 (i.e., the expansion that does not pass through X1). In order to

find this node, the agent checks, one by one, the three candidates. The checking

procedure for candidate v works as follows: the agent drops its second token in v, it
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Figure 2: A 2-expansion from Xi−1. The black nodes are the candidate nodes.

then performs a 3-expansion of the homebase (not passing through X1). If, during

that expansion, the agent finds its token, then v is not the node to add to the

column and therefore the agent has to preform the 3-expansion again for the next

candidate. On the other hand if, during the 3-expansion for candidate v, the agent

does not pass by v (i.e., by the node with the token) then v is the right node to add

to the column. As we will show, the selected node (let us call it X2) is unique, and

the agent can move there to pick up its token and to continue the exploration for

the next node to be added to the column.

Notice that, when looking for Xi+1, with i > 1 the agent needs to perform the

expansions from Xi−1 only in the two directions different from the ones leading to

Xi−2, and Xi (2-expansion). In fact, let X0, X1, . . . , Xi be the first i + 1 nodes

included in the column with i ≥ 1: then, to find the next node Xi+1, the agent

can perform a 2-expansion from Xi−1 selecting as Xi+1 the unique node that is

neighbour of Xi and has not been visited in the expansion (see Figure 2). The high

level description of the column construction algorithm is given in Figure 3.

The procedure to construct a column terminates when the agent drops its second

token in a node that does already contain a token (i.e., it is back at the homebase).

Notice that, at this point the agent knows one dimension of the torus.

Once the column is constructed, the agent proceeds to construct the row (Al-

gorithm construct row not reported here) following exactly the same procedure

in the other direction and finding, as a byproduct, also the second dimension of the

torus. The agent now knows the size of the torus; in order to construct the full

map, it has to discover the correct labeling.

Other rows and columns. At this point the agent constructs, one by one, all

the other rows following the same procedure described above, this time preceded

by a procedure select direction to select the correct orientation of each row

(column).

Let X0, . . . Xn−1 be the nodes of the first column. The agent starts from the
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Protocol construct column(X0)
Release a token at X0, the homebase.
choose an arbitrary direction and move to

an arbitrary neighbour X1

draw (X0, X1) with its labels in the local map
Repeat until back at the homebase

/* Let X0 . . .Xi (i ≥ 1) be already constructed */
consider as candidates the three neighbours of Xi

different from Xi

for each candidate
release token at candidate
If i = 1 then

3-Expand(X0)
/* do not expand through Xi−1 */

If i > 1 then
2-Expand(Xi−1)
/* do not expand through Xi−2 and Xi */

If no token is found
this candidate is Xi+1: the next in the column.
move to Xi+1 and
mark (Xi, Xi+1) in local map. i = i + 1

Figure 3: Protocol construct column.

row corresponding to X1 and then proceeds to the other rows. Before constructing

the row corresponding to Xi, the agent has to correctly choose the orientation of

the row between the two possible departing directions. To do so, it places the token

in one of the two directions, it then goes to Xi−1 and performs a 2-expansion. The

2-expansion will reveal the direction to be followed in the construction of the row

(see Figure 4 and the algorithm in Figure 5).

Since the agent now knows the dimensions of the torus, the construction of each

row terminates when the correct number of nodes has been included. The procedure

to construct the columns is similar.

Correctness and Complexity

Lemma 1 Using Algorithm construct column, the agent walks in a straight

direction and correctly constructs a column.

Proof. We prove by induction that nodes X0, X1, . . . selected by Algorithm

construct column are indeed consecutive nodes in a column.

Basis. Node X1 is chosen arbitrary and is giving the direction of the column. An

expansion from X0 is then performed for each of the three candidate neighbours

of X1. By definition of candidate node and by the torus topology, the only node

at distance one from X1 which is not at distance two from X0 is the next in the

column. Thus, the only candidate node that is not visited during an expansion from

9



Z

U

Figure 4: Determining the direction of the row starting from Xi.

Select row direction from Xi

- Place the token in an arbitrary neighbour z of Xi

(different from X(i−1)modn and X(i+1)modn)
- move to Xi−1

- perform a 2-expansion from Xi−1

(* not passing through Xi and Xi−2 *)
- let (Xi−1, u) be the edge through which the expansion
finds the token
- construct in your map (Xi−1, u), (Xi, z), and (u, z)
- continue the construction in the direction of z

Figure 5: Protocol Select row direction.

X0 (because the expansion does not pass by X1) is the next node in the column.

This node is then correctly considered by the agent as X2 when the token is placed

on it and the expansion does not find it.

Induction. Let us assume that the agent has correctly moved in the same direc-

tion for the first i − 2 steps (i.e., up to the expansion from the node Xi−2), thus

finding that X0, X1, . . . Xi are consecutive nodes in a column. Consider now the

next step of the algorithm (i.e., the expansion from the node Xi−1 to determine

node Xi+1). The algorithm performs a 2-expansion from Xi−1 (i.e., not expanding

Xi−2 and Xi, see Figure 1) for each of the three candidate neighbours. By definition

of torus, the only node at distance one from Xi which is not at distance two from

Xi−1 is the next in the column. This means that the only candidate that is not

visited during an expansion from Xi−1 (because the expansion does not pass by

Xi) is precisely that node. Thus, when the expansion does not meet any token, it

means that the token is currently located on the correct candidate, which is then

considered Xi+2.
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Finally notice that the construction of the column terminates when a token is

placed on a candidate node that already contains a token (i.e., the agent is back at

the homebase). 2

Analogously we have that:

Lemma 2 Using Algorithm construct row, the agent walks in a straight direc-

tion and constructs a row.

Theorem 5 Algorithm construct map is correct.

Proof. From Lemmas 1 and 2, it follows that the first column and the first row

are correctly constructed. At this point the construction of each new row and of

each new column is preceded by the selection of the direction (algorithm select

direction). Consider the construction of the rows (the construction of the columns

is analogous). Before constructing the row corresponding to Xi, the agent places

the token on a neighbour z of Xi that does not lie on the column. It then performs

a 2-expansion from Xi−1. Let us denote by u and w the two neighbours through

which the expansion is performed (see Figure 4); obviously, the 2-expansion will

find the token only in correspondence of one neighbour (in the figure, neighbour

u). Thus, the agent can correctly draw in its map the edges (Xi, z), (Xi−1, u), and

(u, z). The construction of the row correctly proceeds in the direction of z. 2

We now compute the number of moves involved.

Theorem 6 The number of moves performed by the agent to construct the map is

Θ(N), which is optimal.

Proof. Each expansion requires O(1) moves and the agent performs O(n) expan-

sions for selecting the n nodes of the first column. Thus, each procedure construct

column requires O(n) moves, each construct row requires O(m) moves. The

algorithm performs procedure construct column m times, and procedure con-

struct row n times, for a total of: O(m × n) moves. This complexity is clearly

optimal, since to construct a torus of size m × n, the agent has to visit at least

m × n nodes. 2

3.2. Reducing the Number of Tokens: Optimal Algorithm Using One token

We now discuss what happens if the agent has only one token available. We

first very briefly show a quadratic algorithm that is a slight modification of the

previous. We then show that an optimal algorithm with linear number of moves

can be obtained also in this setting.

Using the algorithm of the previous section, the agent is still able to walk in a

straight direction; it is not however able to detect the termination of the column

(row) since there is no token available to mark the homebase.

Checking for termination: an idea. We could solve the termination problem

by checking for termination each time a new node is added to the first column and

to the first row as follows: when a node Xi is included in the column the agent has

to check whether Xi = X0 or not. The agent goes back to the homebase with its

token, releases it there, then travels on the portion of the column just constructed
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[X0, X1, . . . , Xi] and, if the token is found on Xi it decides that the column has been

entirely constructed (i.e., Xi = X0) and starts the construction of the row. It follows

the same procedure during the construction of the row. After the first column and

row (intersecting on the homebase) are constructed, the algorithm proceeds exactly

like in the previous section since at this point the number of nodes in a column (row)

is known and there is no need to check for termination. We call the algorithm for

constructing the first column using this termination procedure: Construct First

Column with one token. As we see below, this idea requires O(N2) moves.

Lemma 3 Algorithm construct First Column with one token is correct.

Proof. From Lemmas 1 and 2, we know that the selection of the next node to

be included in the column is correct. We have only to show that the algorithm

can correctly terminate the construction of the column (row). Since after each new

node Xi, the portion of the ring X0, . . . Xi is known, the agent can correctly move

back to the homebase to release the token. If Xi = X0, then X0, . . . Xi is a ring;

thus, in this case the agent will find its token there. Since we are checking after

each new node is added, if the token is not found in Xi, it means that X0, . . .Xi is

only a portion of the ring and the column has not been constructed yet. 2

Analogous proof holds for the construction of the first row. At this point the

algorithm is identical to the one of the previous section.

Theorem 7 The number of moves performed by the agent to construct the map

with one token is O(N2).

Proof. Consider the construction of the first column. Each expansion requires

O(1) moves and the agent performs O(n) expansions for selecting the n nodes of

the first column. Furthermore, for each portion X0, . . . , Xi the agent performs O(i)

moves to check for termination, for a total of O(n2) moves for checking termina-

tion. Thus, O(n2) moves are required in total for the construction of the column.

Analogously, O(m2) moves are required for the construction of the first row. At

this point, for each of the other n− 1 rows, O(m) moves are performed, for each of

the other m − 1 columns, O(n) moves are performed. The total number of moves

is then: O(n2 + m2 + 2nm). The worst case occurs when one of the dimensions is

O(N); in this case, in fact the number of moves would be O(N2). 2

Token-Optimal and Move-Optimal Solution. In order to obtain a linear so-

lution, we use the same idea; however, instead of checking for termination every

time a new node is included in the column (row), we proceed at successive steps,

starting from step 0. The agent checks for termination every time that the column

is composed by 2i nodes. In other words, at step 0 the agent adds one node to the

column and then checks for termination; at step i the agent adds new nodes to the

column until the current column is composed by 2i nodes, it then comes back to the

homebase releasing the token to check the termination condition; if the termination

condition is not met, the agent moves to step i + 1 and continue the construction.

The high level description of the algorithm for constructing the first column with

one token is given in Figure 6.
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Protocol Linear Construct First Column
with one token from X0 (the homebase)
Select X1; i := 2; j := 0; done = false

While not done do
Repeat 2j−1 times when j > 0 (once when j = 0)

Expand Xi−1 to determine Xi

Draw new labeled edge in local map
End Repeat
Move to X0 with token; release the token
Traverse portion already constructed
If find token done = true

end-while

Figure 6: Optimal Protocol.

Lemma 4 Algorithm Linear Construct First Column with one token is

correct. The number of moves performed by the agent to construct the map with

one token is Θ(N).

Proof. The only difference between this solution and the quadratic one is that the

termination condition is checked only once for each step; i.e., only when the column

is composed by 2i nodes (i > 0). Clearly, when 2i is smaller than n, the termination

condition is not met and the algorithm continues; on the other hand, when 2i ≥ n

during the checking procedure the token will be found and the algorithm terminates.

To calculate the number of movements, consider first the construction of the

first column. Each expansion requires O(1) moves and the agent performs O(n)

expansions for selecting the n nodes of the first column. Furthermore, at step i

the agent performs 2 · 2i moves to check for termination, which is detected when

2i ≥ n; i.e., when i is ⌈log(n) − 1⌉. Thus, the total number of moves for checking

the termination of the column is
∑⌈log(n)−1⌉

i=0 2i+1, which is O(n). In total O(n)

moves are required for the construction of the column. Analogously, O(m) moves

are required for the construction of the first row. At this point, for each of the

other n−1 rows, O(m) moves are performed, for each of the other m−1 rows, O(n)

moves are performed. The total number of moves is then: O(n + m + 2nm), which

is O(N). This complexity is clearly optimal, since the agent has to visit all nodes.

2

4. Orientation by Messages

As mentioned in the introduction, the orientation problem of the Torus has

been studied in the message passing system in [30] and [23]. They distinguish

between a model where the nodes have distinct Ids (Named Torus) and one where

there exists a Leader (Leader Torus). In [30] it is shown an algorithm employing

O(N log N) messages in a Named Torus, and O(N) in a Leader Torus . In [23] it

is shown that also in the Named Torus the linear O(N) bound can be achieved;
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the results derived from a new leader election algorithm for the unoriented torus,

which is also described in [23]. Moreover, an algorithm for the orientation of a

Leader Torus that achieves the complexity of O(N) messages is also described. The

algorithm, however, assumes that the nodes have distinct Ids. Alternatively, it

could be preceded by a pre-naming of the nodes. In both [23] and [30] , messages

have size O(log N) since they contain nodes’ Ids; so the total bit complexity of their

algorithm is O(N log N).

Notice that the solutions in [23, 30] could be easily “translated” in a Whiteboard

mobile agents setting. They cannot, however, be transformed into a mobile agent

solution in the weaker 1-Token Model. The main reason is that messages that arrive

at a node in the distributed algorithms contain information of size O(logN) which

need to be stored at the nodes. While this could be easily achieved by having

an agent carrying the information and writing it on the whiteboard, it cannot be

performed when the whiteboard is not available. On the other hand, the distributed

algorithm that we describe below is a “translation” of the mobile agents’ algorithm

described in Section 3.

Our Algorithm is described for the Leader Torus, and achieves a bit complexity

of O(N) without using any assumption on the presence of distinct Ids, neither

by requiring a labeling of the nodes. In our case, in fact, all nodes (except for the

leader) are (and will stay) anonymous. As a consequence, we just require a constant

space at the node’s memory and messages are of constant size.

The Algorithm. The orientation algorithm follows the idea of the algorithm of

the previous section: first a column and a row are relabeled (Protocols orientcol-

umn and orientrow) and then all other rows and columns are relabeled proceeding

as in Section 3.

We now describe the algorithm for orienting a column. Initially a node is in the

state Leader and all the other nodes are Idle. The leader starts the computation by

labeling an arbitrary link with north and by sending a north message through

that port. Upon receiving a north message, an idle node labels the corresponding

port with south, sends a candidate message to its other three neighbours, and

change state becoming Column. After receiving an acknowledgement from the three

neighbours (which are now Candidate nodes), a Column node sends to south a

request (do-check message) to start the check procedure which will designate the

next node to be added to the column. A node receiving such a request, sends a

message that will reach the nodes at distance two (analogously to the 2-expansion

of the previous section) avoiding to send them in the already constructed north

and south directions. The candidate nodes who receive this expansion message

reply to the last node added to the column saying that they are not the right

candidates (see Figure 7). After receiving two such messages, the Column node

knows the third neighbour is the node to be added to the column and continue

the labeling procedure. Algorithm orientcolumn is reported in Figure 8. At

the end of the algorithm orientcolumn the leader enters a special state (state

COLUMN-DONE) and can start an analogous algorithm orientrow to orient a

14



row. The overall orienting algorithm Orient then consists of the execution of

orientcolumn and orientrow for all the other rows and columns.

IamNot
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Figure 7: The candidates reached by the check message reply to the column that they are
not the right candidates.

Correctness and Complexity.

Theorem 8 Protocol orientcolumn is correct.

Proof. The proof really follows from the previous section since this is an exact

simulation of algorithm constructcolumn performed with an agent. We can

observe that after an Idle node becomes Column exactly three nodes will become

Candidate and one of them will be selected to become Column. The one selected

is the one that has not received the expansion message, by the same reasoning of

Theorem 1, this is the north node. When the leader receives a north message, the

column has been fully labeled. 2

Lemma 5 Protocol orientcolumn exchanges O(n) messages, where n is the num-

ber of nodes in the column.

Proof. Every node in the column of the leader receives a north message and every

node receives a do-check message. Every node of the column starts an expansion

(check messages), which results in 8 messages (12 for the first expansion), for a total

of 8(n-1)+12=8n+4 messages. Each node of the column (except for the leader) sends

three candidate messages, for a total of 3(n − 1) messages and to each of them it

corresponds an Ack message. So, in total there are 16n + 6 messages. 2

Analogously,

Lemma 6 Protocol orientrow exchanges O(m) messages, where m is the num-

ber of nodes in the row.

Since the orientation of a column is repeated m times, while the orientation of

a row is repeated n times, we have:

Theorem 9 Protocol orient exchanges O(N) messages of constant size in a torus

of size N = m × n. So the total bit complexity is O(N).
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PROTOCOL ORIENTCOLUMN.

• Status Values: S = {LEADER,IDLE,COLUMN, COLUMN-DONE};
Initially: {LEADER IDLE};
At the end: a column is relabeled, the leader is now in the state COLUMN-DONE, the
nodes of the column are in the state COLUMN, all the others are IDLE.

LEADER

Spontaneously

send(north) to l;

Receiving(do-check) from north
send(check,2) to N(x) − {sender}; /* start the expansion */

Receiving(north) from l /* the column is done */

relabel l with south;
become(COLUMN-DONE) /* The leader is now ready to start the orientation of a row */

IDLE

Receiving(north) from l

relabel l with south;
send(candidate) to N(x) − {sender};
become(WAITING) /* I need an ack before performing the check */

Receiving(check,2) from l

send(check,1) to N(x) − {sender}; /* I continue the expansion */

Receiving(candidate) from l

send(Ack) to l;

set link − to − column := l;

become(CANDIDATE) /* I could be the next node in the column */

WAITING

Receiving(Ack) from three neighbours l1, l2, l3
send(do-check) to south;
become(COLUMN)

COLUMN

Receiving(IamNot) from two of the three neighbours l1, l2, l3
send(north) to the third; /* the next in the column */

Receiving(do-check) from north
send(check,2) to N(x) − { north, south }; /* start the expansion */

CANDIDATE

Receiving(check,1))

send(IamNot) to link − to − column;

become(IDLE)

Figure 8: The Algorithm in the message-passing environment.
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5. Conclusion

In this paper we have described an algorithm for orienting an anonymous unori-

ented torus by a mobile agent. If the agent has no tokens available the problem is

unsolvable [7]; with our algorithm we have shown that one token is indeed necessary

and sufficient, and that the orientation can be performed with an optimal number

of moves.

The same technique can be used in a message-passing environment giving raise

to the first O(N)-bit algorithm for constructing an orientation in a Torus with a

Leader in the classical message-passing environment.

Since the construction of sense of direction is at least as difficult as the map

construction problem, it is known that one token is not always sufficient for rela-

beling a graph with a sense of direction. An interesting problem would be to study

for what other classes of graphs, besides tori, a single mobile agent can construct a

sense of direction using one token only.
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