
Multiple Agents RendezVous In a Ring

in Spite of a Black Hole

Stefan Dobrev1, Paola Flocchini1, Giuseppe Prencipe2, and Nicola Santoro3

1 University of Ottawa, {sdobrev,flocchin}@site.uottawa.ca
2 Università di Pisa, prencipe@di.unipi.it

3 Carleton University, santoro@scs.carleton.ca

Abstract. The Rendezvous of anonymous mobile agents in a anonymous network is an intensively
studied problem; it calls for k anonymous, mobile agents to gather in the same site. We study this
problem when in the network there is a black hole: a stationary process located at a node that destroys
any incoming agent without leaving any trace. The presence of the black hole makes it clearly impossible
for all agents to rendezvous. So, the research concern is to determine how many agents can gather and
under what conditions.

In this paper we consider k anonymous, asynchronous mobile agents in an anonymous ring of size n

with a black hole; the agents are aware of the existence, but not of the location of such a danger. We
study the rendezvous problem in this setting and establish a complete characterization of the conditions
under which the problem can be solved. In particular, we determine the maximum number of agents
that can be guaranteed to gather in the same location depending on whether k or n is unknown (at least
one must be known for any non-trivial rendezvous). These results are tight: in each case, rendezvous
with one more agent is impossible.
All our possibility proofs are constructive: we provide mobile agents protocols that allow the agents
to rendezvous or near-gather under the specified conditions. The analysis of the time costs of these
protocols show that they are optimal.

Our rendezvous protocol for the case when k is unknown is also a solution for the black hole location

problem. Interestingly, its bounded time complexity is Θ(n); this is a significant improvement over the
O(n log n) bounded time complexity of the existing protocols for the same case.

Keywords: Mobile Agents, RendezVous, Gathering, Black Hole, Harmful Host, Ring Network, Asynchronous,
Anonymous, Distributed Computing.

1 Introduction

In networked systems that support autonomous mobile agents, a main concern is how to develop efficient
agent-based system protocols; that is, to design protocols that will allow a team of rather “simple” agents
to cooperatively perform complex system tasks. A main approach to reach this goal is to break a complex
task down into more elementary operations. Example of these primitive operations are wakeup, traversal,
gathering, election. The coordination of the agents necessary to perform these operations is not necessarily
simple or easy to achieve. In fact, the computational problems related to these operations are definitely non
trivial, and a great deal of theoretical research is devoted to the study of conditions for the solvability of
these problems and to the discovery of efficient algorithmic solutions; e.g., see [4–6, 15].

At an abstract level, these environments, which we shall call distributed mobile systems, can be described
as a collection E of autonomous mobile entities located in a graph G. Depending on the context, the entities
are sometimes called robots or agents; in the following, we use the latter. The agents have computing capa-
bilities and bounded storage, execute the same protocol, and can move from node to neighboring node. They
are asynchronous, in the sense that every action they perform takes a finite but otherwise unpredictable
amount of time. Each node of the network, also called host, provide a storage area called whiteboard for
incoming agents to communicate and compute, and its access is held in fair mutual exclusion. The research

concern is on determining what tasks can be performed by such entities, under what conditions, and at what
cost.

In this paper, we focus on a fundamental task in distributed mobile computing, rendezvous in the simplest
symmetric topology: the ring network. We will consider its solution in presence of a severe security threat:
a black hole, a network site where a harmful process destroys all incoming agents without leaving a trace.

Rendezvous. The rendezvous problem consists in having all the agents gather at the same node; upon
arriving there, each agent terminally sets its variable to arrived; there is no a priori restriction on which node
will become the rendezvous point.

This problem (sometimes called gathering, point-formation, or homing) is a fundamental one in distributed
mobile computing both with agents in graphs and with robots in the plane.

In the case of agents in the graph, the rendezvous problem has been extensively investigated focusing on
more limited settings (e.g., without whiteboards) with two agents; e.g., see [1–3, 6, 7, 13, 19]. Almost from
the start it became obvious that the possibility (and difficulty) of a solution is related to the possibility (and
difficulty) to find or create an asymmetry in anonymous and symmetric settings, like the one considered
here, to break symmetry in the problem and thus ensure a rendezvous solutions researchers have used
randomization (e.g., [2]), or different deterministic protocols for the two agents (e.g., [19]), or indistinguishable
tokens [13]. The case of more than two agents has been investigated in [11, 14, 17], with only [11] providing
a fully deterministic solutions for anonymous ring networks.

Let us stress that all these investigations assume synchronous agents and this assumption is crucial for
the correctness of their solutions.

In contrast, in our setting, both nodes and agents, besides being anonymous, are also fully asynchronous.
The only known results for this setting are about the relationship between sense of direction and possibility
of rendezvous [6]; interestingly, the link between rendezvous and symmetry-breaking is even more clear:
rendezvous is in fact equivalent to the election problem [6].

Black Hole Location. Among the severe security threats faced in systems supporting mobile agents, a
particularly troublesome one is a harmful host; that is, the presence at a network site of harmful station-
ary processes. The problem posed by the presence of a harmful host has been intensively studied from a
programming point of view (e.g., see [12, 16, 18]), and recently also from an algorithmic prospective [8, 9].
Obviously, the first step in any solution to such a problem must be to identify, if possible, the harmful host;
i.e., to determine and report its location. Depending on the nature of the danger, the task to identify the
harmful host might be difficult, if not impossible, to perform.

A particularly harmful host is a black hole: a host that disposes of visiting agents upon their arrival, leaving
no observable trace of such a destruction. The task is to develop a mobile agents protocol to determine and
report the location of the black hole; the task is completed if, within finite time, at least one agent survives
and knows the location of the black hole. The research concern is to determine under what conditions and at
what cost mobile agents can successfully accomplish this task, called the black hole location problem. Note
that this type of highly harmful host is not rare; for example, the undetectable crash failure of a site in a
asynchronous network transforms that site into a black hole.

The black hole location problem has been investigated focusing on identifying conditions for its solvability
and determining the smallest number of agents needed for its solution [8–10]. In particular, a complete
characterization has been provided for ring networks [8].

Our Contributions. In this paper we consider the rendezvous problem in a more difficult setting: k asyn-
chronous anonymous agents dispersed in a totally symmetric ring network of n anonymous sites, one of which
is a black hole.

Clearly it is impossible for all agents to gather since an adversary (i.e., a bad scheduler) can immediately
direct some agents towards the black hole. So, the research concern is to determine how many agents can
gather. We study this problem and establish a complete characterization of the conditions under which the
problem can be solved. The possibility results are summarized in the table shown in Figure 1; these results

2

are tight: in each case, rendezvous with one more agent is impossible. It is interesting to observe that at least
one of k and n must be known to the agents; however, knowledge of both is not necessary.

n unknown, k known n known, k unknown

ORIENTED ∀k RV (k − 1) ∀k RV (k − 2)

k odd RV (k − 2) k odd or n even RV (k − 2)
UNORIENTED k even RV (k−2

2
) k even and n odd RV (k−2

2
)

∀k G(k − 2, 1) ∀k G(k − 2, 1)

Fig. 1. Summary of possibility results.

Some of these results are unexpected. For example, in an oriented ring all but one agents can indeed
rendezvous even if the ring size n is not known, a condition that makes black hole location impossible.

In an unoriented ring, at most k − 2 agents can rendezvous; surprisingly, if they can not, there is no
guarantee that more that (k − 2)/2 will. It is however always possible to bring all k − 2 within distance 1
from each other.

All our possibility proofs are constructive: we provide mobile agents protocols that allow the agents to
rendezvous or near-gather under the specified conditions.

Our rendezvous protocol, for the case when k is unknown, is also a solution for the black hole location
problem. Interestingly, its bounded time complexity is O(n); this is a significant improvement over the
O(n log n) bounded time complexity of the existing protocols for the same case [8].

Due to space limitation all the proofs are omitted.

2 Definitions, Basic Properties and Techniques

2.1 The Framework

The network environment is a ring R of n anonymous (i.e., identical) nodes. Each node has two ports,
labelled left and right; if this labelling is globally consistent, the ring will be said to be oriented, unoriented

otherwise. Each node has a bounded amount of storage, called whiteboard.
In this network there is a set a1, . . . , ak of k anonymous (i.e., identical) mobile agents. The agents can

move from node to neighboring node in R, have computing capabilities and bounded storage, obey the same
set of behavioral rules (the “protocol”), and all their actions (e.g., computation, movement, etc) take a finite
but otherwise unpredictable amount of time (i.e., they are asynchronous). Agents communicate by reading
from and writing on the whiteboards; access to a whiteboard is done in mutual exclusion. The agents execute
a protocol (the same for all agents) that specifies the computational and navigational steps. Initially, each
agent is placed at a distinct node, called its homebase, and has a predefined state variable set to available.
Let us denote by xi the homebase of agent ai. Each homebase is initially marked by the corresponding agent.

The agents are aware of the fact that in the network there is a black hole (Bh); its location is however
unknown. In this environment, we are going to consider the Rendezvous problem and the Near-Gathering

problem defined below.
The Rendezvous problem RV (p) consists in having at least p ≤ k agents gathering in the same site. There

is no a priori restriction on which node will become the rendezvous point. Upon recognizing the gathering
point, an agent terminally sets its variable to arrived. We consider a solution algorithm terminated when at
least p agents become arrived (explicit termination).

The Near-Gathering problem G(p, d) consists in having at least p agents within distance d from each other.
As for the Rendezvous problem we consider the algorithm terminated when at least p agents know that they
are within distance d from each other and change their state to a terminal state. Clearly, G(p, 0) = RV (p).

3

The efficiency of a solution protocol is obviously first and foremost measured in the size of the solution,
i.e. the number of agents that the algorithm will make rendezvous at the same location. A secondary but
important cost measure is the amount of time elapsed from the beginning to the termination of the algorithm.
Since the agents are asynchronous, “real” time cannot be measured. We will use the traditional measure of
bounded time, where it is assumed that the traversal of a link takes at most one time unit. During the
computation some agents will disappear in the black hole, some will survive and eventually gather; for the
purposes of bounded time complexity we will consider that the overall computation starts (i.e., we will start
to count time) when the first surviving agent starts the algorithm.

2.2 Cautious Walk

In the following we describe a basic tool, first introduced in [8], that we will use in all our protocols to
minimize the number of agents that disappear in the back hole.

In our algorithms, the ports (corresponding to the incident links) of a node can be classified as (a)
unexplored – if no agent has moved across this port, (b) safe – if an agent arrived via this port or (c) active

– if an agent departed via this port, but no agent has arrived via it. Clearly, both unexplored and active

links are dangerous in that they might lead to the black hole; the difference is that active links are being
traversed, so there is in general no need for another agent to go through that link until the link is declared
safe.

The technique we use, called cautious walk, is defined by the following two rules:
Rule 1. when an agent moves from node u to v via an unexplored port (turning it into active), it immediately
returns to u (making the port safe), and then goes back;
Rule 2. no agent leaves via an active port.

In the following, agents will either move only on safe links or move using cautious walk.

2.3 Basic Results

There are some basic obvious facts:

Theorem 1. In an anonymous ring with a Bh

1. RV (k) is unsolvable;

2. If the ring is unoriented, then RV (k − 1) is unsolvable.

Less obvious are the following facts. Rendez-vous problem RV (p) is said to be non-trivial if p is a non-
constant function of k.

Theorem 2. If k is unknown, non-trivial rendez-vous requires locating the black hole.

In view of the fact that knowledge of n is necessary for locating a black hole

Theorem 3. [8] If n is not known, BH location is unsolvable.

it follows that

Theorem 4. Either k or n must be known for non-trivial rendez-vous.

3 Characterization and Tight Bounds

3.1 RendezVous when n is unknown

An immediate consequence of the fact that n is unknown is that, by Theorem 4, k must be known for non-
trivial rendezvous to occur. Hence, in the rest of this section we assume that k is known. Another consequence
of n being unknown is that, by Theorem 3, we can not locate the black hole!

Let us now examine under what conditions the problem can be solved and how.

4

In Oriented Rings

Theorem 5. RV (k − 1) can be always solved, and this can be achieved in time at most 3(n − 2).

To prove this theorem, consider the following protocol GoRight!; agents are in two states: explorer and
follower.

PROTOCOL GoRight!

1. Initially, everybody is an explorer.
2. An explorer moves right using cautious walk. If it enters a node visited by another agent, it becomes a

follower.
3. A follower moves right, traversing only safe links.
4. If there are k − 1 followers in one node, the agents there terminate the execution of the protocol.

Lemma 1. Protocol GoRight! solves RV (k − 1).

Note that the rendezvous site is not necessarily next to the black hole.

Lemma 2. Protocol GoRight! terminates in time at most 3(n − 2) since the start of the leftmost agent.

Note: There are situations in which the 3(n − 2) time bound is indeed achieved: Consider a scenario
where there are agents in the two sites neighboring the black hole; the leftmost agent wakes up first and all
other agents join the execution only when an agent arrives to their node. Clearly, the left most agent must
wake-up all other agents, and every edge must be traversed using cautious walk.

Theorem 5 now immediately follows from Lemmas 1 and 2.

Unoriented Rings Since the ring is not oriented, by Theorem 1, RV (k−1) can not be solved as two agents
can immediately disappear in the black hole. Hence, the best we can hope for is RV (k − 2). The result is
rather surprising. In fact, either k − 2 can gather or no more that (k − 2)/2 can, with nothing in between.

Theorem 6.

1. If k is odd, RV (k − 2) can always be solved

2. If k is even, RV (p) can not be solved for p > (k − 2)/2; however, RV ((k − 2)/2) can always be solved.

3. G(k − 2, 1) can always be solved.

To prove this theorem, we will logically partition the entities in two sets, “clockwise” (or blue) and
“counterclockwise” (or red), where all entities in the same set have a common view of “right”. Notice that
each agent, although anonymous, can easily detect whether a message on a whiteboard has been written by
an agent in the same set or not (e.g, each message contains also an indication of which of the two local ports
the writer considers to be “right”).

Consider first the case when k is odd (recall k is known).

We have the following protocol GR-Odd.

1. The agents of each set first of all execute the rendezvous algorithm GoRight! for oriented rings, inde-
pendently of and ignoring the agents of the other set, terminating as soon as (k − 1)/2 follower agents
of the same set gather in the same node.
(Notice: this will eventually happen, and only to one set, as there is only one set with at least (k + 1)/2
agents, and eventually only one of those agents will remain explorer).
Without loss of generality, let this happens to the red agents.

2. The node where the (k − 1)/2 red followers have gathered becomes the collection point, and one of the
followers is selected as left-collector.

3. Every follower or blue explorer arriving at the collection point joins the group.

5

4. The left-collector x travels (using cautious walk when necessary) left and tells every follower and red
explorer it encounters to go to the collection point; it does so until it reaches the black hole or the last safe
node explored by a blue explorer. In the latter case, the left-collector leaves a message for the blue explorer

y informing it of the meeting point, and instructing it to become left-collector; it then returns to the
collection point. If/when the explorer y returns to that node, it finds the message, becomes left-collector

and acts accordingly.
5. A red explorer returning to the collection point during its cautious walk (notice: there is only one)

becomes now a right-collector.
6. The rules for the right-collector are exactly those for the left-collector, where “left” is replaced by “right”,

and viceversa.

Since k is odd, we get

Lemma 3. There is only one collection point.

By construction of algorithm GR-Odd we have

Lemma 4. Every edge non-incident to the black hole will be traversed by a collector.

Because of cautious walk, at most 2 agents will enter the black hole; this fact, combined with Lemma 4,
yields the following:

Lemma 5. k − 2 agents will gather in the collection point.

Hence, by Lemmas 3 and 5, part (1) of Theorem 6 holds. Before proceeding with the proof of the other
parts of Theorem 6, let us examine the time costs of ProtocolGR-Odd.

Theorem 7. Protocol GR-Odd terminates in time at most 5(n − 2).

Consider now the case when k is even (recall k is known). To prove part (2) of Theorem 6 we first observe
that RV ((k − 2)/2) can always be solved by trivially having each set execute the rendezvous algorithm
GoRight! for oriented rings, and terminating it when at least k/2−1 follower agents of the same set gather
in the same node. To complete the proof, we need to show that, when k is even, rendezvous of a greater
number of agents can not be guaranteed.

Lemma 6. If k is even then RV (p) can not be solved for p > (k − 2)/2.

We now show that, although we cannot guarantee that more than half of the surviving agents rendezvous,
we can however guarantee that all the surviving agents gather within distance 1 from each other. To prove
this, we use the following protocol GR-Even.

We will first of all have each set execute the rendezvous algorithm GoRight! for oriented rings, indepen-
dently of and ignoring the agents of the other sets, and terminate it when (at least) k/2− 1 follower agents
of the same set gather in the same node. Notice that it is possible that two (but no more than two) such
gathering points will be formed; further notice that they could be both made of agents of the same color!

Let us concentrate on one of them and assume, without loss of generalitazion, that it is formed of red

agents. By definition, associated with it, there is a red explorer that will become a right-collector once it
realizes the collection point has been formed; among the followers gathered there, a left-collector has also
been selected. Both collectors behave as in GR-Odd except that, now, each of them could encounter a
collector from the other group (if it exists). Therefore, we need to add the following rules:

1. a collector keeps the distance from its collection point. When passing the role of collector to an explorer,
it passes also the distance information.

2. when a collector meets another collector (notice: they must be from different groups; further notice, they
might actually “jump” over each other):
(a) if they are of the same color, then they agree on a unique site (e.g., the rightmost of the two ones)

as the final common collection point;

6

(b) if they are of different colors, if the distance between the collection points is odd, they agree on the
middle node as the final common collection point; otherwise, each chooses the closest site incident
on the middle edge as the final collection point of its group.

(c) each goes back to its group and notifies all the agents there of their final collection point.

Lemma 7. Protocol GR-Even guarantees that (k − 2) agents will either rendezvous in the same node or

gather within distance 1.

This completes the proof of Theorem 6. The time efficiency of Protocol GR-Even can be easily deter-
mined:

Theorem 8. Protocol GR-Even terminates in time at most 5(n − 2).

3.2 RendezVous when k is unknown

An immediate consequence of the fact that k is unknown is that, by Theorem 4, the ring size n must be
known for any non-trivial rendez-vous to be possible.

Another consequence is that, by Theorem 2, if we want to rendez-vous we must locate the black hole!
Let us examine under what conditions and how the problem can be solved.

Oriented Rings

Theorem 9. Let k ≥ 4. Then RV (k − 2) can always be solved.

To prove this theorem we design a protocol, called Shadow, quite different from the ones used when k is
known. The “virtual” structure of the protocol is rather simple:

1. There will be a pair of agents, a right explorer and a left-explorer, that will transform every link not
leading to the Bh into a safe one by moving (using cautious walk) in opposite directions along the ring.
Clearly, both these explorers will disappear in the Bh.

2. Associated to the pair of explorers there is a pair of agents, a right shadow and a left shadow, whose
function is to detect when both explorers have moved to the Bh.

3. The shadows will then become collectors, traverse the safe area, collecting the other entities, and meet
in a site that becomes the collection point.

To make this “virtual” structure real we must solve several problems, summarized by the following questions:
Q1. how do we create a unique pair of explorers ? Q2. how do we create a unique pair of shadows ? Q3. how
do the shadows detect termination ? Q4. how do the collectors make all other entities gather at a unique
collection point ?
The first two questions are particularly important since initially the agents are all in the same identical state
(recall, they are anonymous) and execute the same protocol. An informal description of the algorithm and
thus of the answers to these questions follows.

Initially, each agent is active and moves “right” using cautious walk. It is possible that an active agent
x enters the Bh (because of cautious walk, this can happen to at most one agent); in this case, x will be
considered the final right-explorer (one of the two we are looking for). If instead an active agent x reaches
the last safe point of another active entity y, it transforms itself into a left-explorer and moves “left” using
cautious walk: a pair is born.

So, after some time, pairs of left- and right- explorers will start to be formed (see Figure 2), the two
members of each pair moving in opposite directions. Notes that each pair delimits a contiguous segment of
safe nodes in the ring. Sooner or later, a right-explorer x will meet the left-explorer z belonging to a different
pair; i.e., two segments meet. When this happens, the two agents cease to be explorers and each becomes a
shadow looking for a master; as a consequence , out of their two pairs they create a single pair composed
of the right-explorer to the right of z and the a left-explorer to the left of x; i.e., the two segments merge.

7

Eventually, only one pair of explorers will be left (note that when this happens, they are possibly both in
the Bh already).

Initially, all explorers are without a shadow; as soon as an explorer has a shadow (and is aware of this fact)
it is said to be complete. What will x and y do when they become shadows looking for a master is to check
if the explorers of their segment have a shadow: if they are not complete, they will become so: x becomes the
shadow of one of them, and y of the other; if they are both complete already, x and y will become passive

and wait to be collected; if only one of them is complete, only one of x and y will become a shadow, the
other passive (see Figure 2). Note that, in any case, the segment where x and y are will have two complete

explorers. This means that, eventually, there will be only one couple of right-shadow and left-shadow.
The task of a shadow x is to check the size of the segment it belongs to. In particular, a right-shadow

x waits until its right-explorer z has increased the size of the segment by one; at this point, x goes to the
left-explorer of the segment, and measures the size of the segment: if the size is n − 1 (i.e., all nodes except
the Bh have been explored), x becomes collector and starts moving in the opposite direction; otherwise, it
goes back to its right-explorer. The left-shadow follow similar rules. Only the two final shadows can become
collectors.

The task of a collector, is to collect all the passive entities it encounters traversing the safe area, trans-
forming them into collected; those entities will then follow the collector. In this way, when the two collectors

meet, a unique gathering point has been formed, and all collected agents will gather there.
Following is the detailed description of the protocol. Initially, all entities are active.

3

4

5

6
7

8

2
1

Bh

3

4
5

6

7

8

1

2

3

4

6

7

5

8

2

1

8

7

6
5

4

3

1

2

Fig. 2. The Shadow Protocol, where the ring is assumed to be oriented clockwise. The empty circles represent active

agents; the white squares are the explorers, the grey squares the shadows, and the black squares the passive agents.
The fat line evidences the segments delimited by the explorers. The numbers are placed only to clarify how the agents
move, and are not used at all during the computation.

PROTOCOL Shadow

1. An active agent x moves to the right until one of the following will happen:

(a) It reaches the “last safe site” of another active entity y; in this case it leaves a message “Become Right
Explorer”for y, and becomes a left-explorer without shadow.

(b) It finds (returning to its “last safe site” during cautious walk) the message “Become Right Explorer”. If there
is no shadow, it becomes a right-explorer without shadow, else it becomes a complete right-explorer; in either
case, it moves to the right.

(c) It meets a left-explorer z (or reaches its “last safe site”); in this case, x becomes a shadow looking for master.
(d) It enters the Bh; in this case, x will be considered to have become a right-shadow.

2. An (left- or right-) explorer x continues to move in the assigned direction using cautious walk until one of the
following will happen:

(a) It meets (or reaches the “last safe site” of) an explorer coming in the opposite direction. In this case x

becomes a shadow-looking-for-explorer;

8

(b) It finds (returning to its “last safe site” during cautious walk) the message “You Have a Shadow”. It becomes
a complete explorer and continues to move in the assigned direction.

(c) [Only for left-explorer.] It reaches the last safe site of an active entity containing the message “Become Right
Explorer”; in this case it becomes shadow looking for a master.

(d) [Only for right-explorer.] It reaches the “last safe site” of an active entity y; in this case, x leaves a message
“Become Right Explorer”, and becomes a shadow looking for a master.

(e) It enters the Bh.
3. A shadow x looking for a master does the following:

(a) It goes to check if the right-explorer is without a shadow. If this is the case, x leaves a message “You Have a
Shadow”, becomes right-shadow, and is assigned to that explorer;

(b) If the right-explorer is already complete, x goes to check if the left-explorer is without a shadow. If this is the
case, x leaves a message “You Have a Shadow”, becomes left-shadow, and is assigned to that explorer.

(c) If both explorers already have shadows, x becomes passive and waits to be collected by a collector.
4. A (left- or right-) shadow x assigned to an explorer z does the following:

(a) It waits in the “last safe site” of the explorer of the assigned direction, until the “safe” area is increased by
(at least) one site (since last time x checked);

(b) It then goes towards the “last safe site” of the opposite explorer y counting the size of the safe area; when it
arrives there:

i. If the size of the safe area is n − 1 then both explorers are in the Bh, and the final part of the protocol
starts: x becomes a collector and moves in the assigned direction.

ii. Otherwise, x goes back to the “last safe site” of the explorer in its assigned direction, to check whether
the “safe” area has increased since x left. If in this travel it encounters another shadow of the same type
(i.e., right-shadow encounters right-shadow), x checks if there is a left-shadow; if so, x becomes passive

and waits to be collected by a collector; otherwise x becomes left-shadow, is assigned to the “left” explorer

and leaves a message “You Have a Shadow” for it.
iii. If reaches a site traversed by a collector, it becomes collected and follows the collector.

5. A collector x moves in the assigned direction until it encounters a collector traveling in the opposite direction or
travels n − 1 steps. During this travel, if it finds a passive agent, it transform it into collected. A collected agent
follows its collector.
(a) If a collector finds the other collector z: If they both meet at the same node, that node becomes the unique

collection point: all other agents will stop there. If the collectors jumped over each other over an edge, the
right endpoint of the edge is chosen as the collection point.

(b) If it travels distance n − 1 without encountering the other collector, that site becomes the unique gathering
point.

Let us now examine the correctness of protocol Shadow.

Lemma 8. Within finite time there will be only one right-explorer and one left-explorer, and they will both

enter the black hole.

Lemma 9. Within finite time there will be only one right-shadow and one left-shadow.

Lemma 10. At least one shadow will become collector, and a collector knows the location of the black hole.

Lemma 11. Every edge non-incident to the Bh will be traversed by a collector.

Lemma 12. There will be a unique collection point.

Lemma 13. k − 2 agents will gather in the collection point.

This completes the proof of Theorem 9. Let us now examine the time costs of this protocol.

Theorem 10. The protocol Shadow terminates in at most 8(n − 2) time steps since the wake-up of the

leftmost agent.

Let us stress that protocol Shadows solves the black hole location problem (by Lemma 10). This means
that we have obtained a significant improvement over the O(n log n) time complexity of the existing protocols
for the black hole search.

9

Unoriented Rings Interestingly, we discover for the unoriented case better conditions than those we have
found when k was known instead of n.

Theorem 11.

1. If k odd or n even, RV (k − 2) can always be solved

2. If k even and n is odd, RV (p) can not be solved for p > b(k−2)/2c; however, RV (b(k−2)/2c) can always

be solved.

3. G(k − 2, 1) can always be solved.

We will again logically partition the entities in two sets, “clockwise” or blue and “counterclockwise” red,
where all entities in the same sat have a common view of “right”.

To prove part 1. of Theorem 11 we consider PROTOCOL Blue-Red Shadows. This is protocol Shadows

expanded to take care of few additional cases that can occur.

NEW CASES:
- In Rule 2 of Shadows: A red active can “encounter” a blue active entity; in this case they both become
explorers each continuing to move in its current direction.
- In Rule 5.b.ii of Shadows: A red right-shadow (resp. left-shadow) x returning to its assigned explorer can
encounter a blue left-shadow (resp. right-shadow) y ; in this case, x acts as it has encountered a red left-shadow

(resp. right-shadow).

Lemma 14. Lemmas 8 to 11 hold also for protocol Blue-Red Shadows in unoriented rings.

Consider first the case when k is odd or n is even.

Lemma 15. There will be a unique collection point.

Lemma 16. k − 2 agents will gather in the collection point.

Consider now the case when k is even and n is odd.

Lemma 17. If k is even and n is odd then RV (p) can not be solved for p > (k−2)/2; however, RV ((k−2)/2)
can be achieved.

We now show that, although we cannot guarantee that more than half of the surviving agents rendez-vous,
we can however guarantee that all the surviving agents gather within distance 1 from each other.

Lemma 18. Protocol Blue-Red Shadows guarantees that (k − 2) agents will either rendez-vous in the

same node or gather within distance 1.

Using the same approach as in the proof of Theorem 10 we get

Theorem 12. The modified protocol Shadow for unoriented rings terminates in at most 8(n−2) time steps.

References

1. S. Alpern. The Rendezvous Search Problem. SIAM Journal of Control and Optimization, Volume 33, 673 - 683,
1995.

2. S. Alpern and V. Baston and S. Essegaier. Rendezvous Search on a Graph. Journal of Applied Probability, 36,
No.1, 223-231, 1999.

3. E.J. Anderson and R.R.Weber. The Rendezvous Problem on Discrete Locations. Journal of Applied Probability,
28, 839-851, 1990.

4. E. Arkin, M. Bender, S. Fekete, and J. Mitchell. The freeze-tag problem: how to wake up a swarm of robots. In
13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pages 568–577, 2002.

5. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In 14th ACM
Symp. on Parallel Algorithms and Architectures (SPAA ’02), 200-209, 2002.

10

6. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Election and rendezvous in fully anonymous systems with
sense of direction. In 10th Colloquium on Structural Information and Communication complexity (SIROCCO ’03),
17-32, 2003.

7. A. Dessmark, P. Fraigniaud and A. Pelc. Deterministic rendezvous in graphs. In 11th Annual European Sympo-
sium on Algorithms (ESA’03) 2003.

8. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for a black hole in an anonymous
ring. In 15th Int. Symposium on Distributed Computing (DISC 2001), 166–179, 2001.

9. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in arbitrary networks. In 21st
ACM Symposium on Principles of Distributed Computing (PODC ’02), 153-162, 2002.

10. S. Dobrev, P. Flocchini, R. Král’ovič, G. Prencipe, P. Ružička, and N. Santoro. Searching for a black hole
in hypercubes and related networks. In 6th International Conference on Principles of Distributed Systems
(OPODIS ’02),171-182, 2002.

11. P.Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Multiple Mobile Agent Rendezvous in a Ring.
In LATIN ’04 (accepted for publication).

12. F. Hohl. A Framework to Protect Mobile Agents by Using Reference States. In International Conference on
Distributed Computing Systems (ICDCS ’00), 2000.

13. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Mobile Agent Rendezvous in a Ring. In 23rd International
Conference on Distributed Computing Systems (ICDCS’03), 2003.

14. W.S. Lim and A. Beck and S. Alpern. Rendezvous search on the Line with More Than Two Players. Operations
Research, 45, pp. 357-364, 1997.

15. P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms, 33:281–295, 1999.
16. T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts. In: Mobile Agents and Security,

LNCS 1419, pp. 44-60, 1998.
17. L.C. Thomas amd P.B. Hulme. Searching for Targets Who Want to be Found. Journal of the Operations Research

Society, 48, Issue 1, pp. 44-50, 1997.
18. Jan Vitek and Giuseppe Castagna. Mobile Computations and Hostile Hosts. In: D. Tsichritzis (Ed.), Mobile

Objects, University of Geneva, pp. 241-261, 1999.
19. X. Yu and M. Yung. Agent Rendezvous: A Dynamic Symmetry-Breaking Problem. In ICALP ’96, LNCS 1099,

610-621, 1996.

11

