
Theoretical Computer Science 385 (2007) 34–48
www.elsevier.com/locate/tcs

Map construction of unknown graphs by multiple agentsI

Shantanu Dasa,∗, Paola Flocchinia, Shay Kuttenb, Amiya Nayaka, Nicola Santoroc

a School of Information Technology and Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
b Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa 32000, Israel

c School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6 Canada

Received 15 September 2006; received in revised form 6 May 2007; accepted 9 May 2007

Communicated by D. Peleg

Abstract

We consider a distributed version of the graph exploration and mapping problem where a mobile agent has to traverse the edges
of an unlabelled (i.e., anonymous) graph and return to its starting point, building a map of the graph in the process. In our case,
instead of a single agent, there are k identical (i.e., mutually indistinguishable) agents initially dispersed among the n nodes of the
graph. The agents can communicate by writing to the small public bulletin boards available at each node. The objective is for each
agent to build an identically labelled map of the graph; we call this the Labelled Map Construction problem. This problem is much
more difficult than exploration by a single agent, because it involves achieving cooperation among multiple agents. In fact, this
problem is deterministically unsolvable in some cases. We present deterministic algorithms that successfully and efficiently solve
the problem under the condition that the values of n and k are co-prime with each other. We also show how the problem of Labelled
Map Construction is related to other problems like leader election and rendezvous of agents.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Labelled Map Construction; Graph exploration; Leader election; Rendezvous; Anonymous mobile agents

1. Introduction

The problem of exploring and mapping an unknown environment has been studied extensively due to its various
applications in different areas. Some examples are navigating a robot through a terrain containing obstacles, finding a
path through a maze, and searching a computer network using mobile software agents. In these cases, the environment
to be explored is often modelled as a graph, (or a digraph) where a single entity (called an agent or a robot) starting at
one of the nodes of the graph, has to traverse through all the edges of the graph and returns back to the starting point,
constructing a map of the graph in the process. The problem has been studied under two scenarios. In the first case,

I Some of the results of this paper have been presented at the 12th Colloquium on Structural Information and Communication Complexity
(SIROCCO), France 2005 [S. Das, P. Flocchini, A. Nayak, N. Santoro, Distributed exploration of an unknown graph, in: Proc. 12th Coll. on
Structural Information and Communication Complexity, SIROCCO’05, 2005, pp. 99–114. [12]].

∗ Corresponding author. Tel.: +1 613 5625800x2167; fax: +1 613 5625664.
E-mail addresses: shantdas@site.uottawa.ca (S. Das), flocchin@site.uottawa.ca (P. Flocchini), kutten@ie.technion.ac.il (S. Kutten),

anayak@site.uottawa.ca (A. Nayak), santoro@scs.carleton.ca (N. Santoro).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.05.011

http://www.elsevier.com/locate/tcs
mailto:shantdas@site.uottawa.ca
mailto:flocchin@site.uottawa.ca
mailto:kutten@ie.technion.ac.il
mailto:anayak@site.uottawa.ca
mailto:santoro@scs.carleton.ca
http://dx.doi.org/10.1016/j.tcs.2007.05.011

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 35

when the nodes of the graph are labelled with unique identifiers, then the problem is reduced to that of Traversal, that
is of visiting every node and every link of the graph, and the issue becomes that of efficiently performing a traversal
of the unknown graph. In the other case, i.e. in the absence of such unique labels, the task becomes more difficult, but
can still be achieved if the agent is supplied with a marking device for marking the nodes during exploration.

In this paper, we consider the distributed version of this problem where instead of a single agent, there are now
several identical agents starting at different nodes of the graph and each of the agents is trying to explore and map
the graph. The agents are identical in all respect – they have the same capabilities and follow the same protocol –
in particular, they cannot be distinguished from one another. We do not assume the presence of any synchronization
between the agents (i.e. the agents do not share the same clock). The only means of communication among the agents
is using a limited amount of shared memory available at the nodes of the graph. (Each node of the graph contains a
whiteboard where any visiting agent can read or write information in fair mutual exclusion.)

The objective for each agent is to build a map of the graph that they are traversing; By a map, we mean a
node-labelled, edge-labelled representation of the graph where the starting location of the agent is specially marked.
Moreover, we want the maps obtained by the agents to be consistent with one another in terms of the node labelling,
i.e. the label assigned to any node should be the same in every agent’s map. We call this problem labelled map
construction (LMC). The problem is solved when each agent returns to its homebase and outputs such a map of the
graph. Note that having such identically labelled maps helps the agents to coordinate with each other when performing
any distributed task together; hence the importance of this problem.

The motivation for considering unlabelled graphs is the fact that in many practical scenarios, the limited capabilities
of the agents may not allow them to distinguish among the nodes of the graph. For example, consider a robot traversing
a graph-like world, where the edges are roads and the nodes are the intersections; the robot may not have enough
sensory capabilities to distinguish one intersection from another visited previously. In the case of software agents
traversing a network, the identification field of the nodes (i.e. the network hosts) may be intentionally kept hidden
from the visiting agents, say due to security considerations. Thus, from the viewpoint of the agents, we can assume
the nodes of the graph to be unlabelled (anonymous), so that all nodes of same degree look the same to an agent.
Clearly, in order to explore such an anonymous graph, the agents need to somehow mark the nodes (by writing on
the whiteboards), so that previously visited nodes can be identified on subsequent visits. However, having multiple
identical agents creates problems here: marks made by one agent could be indistinguishable from those made by
another; different agents might mark in the same way different nodes. Thus, it is not clear whether multiple agents
can successfully map an anonymous graph.

This problem, as we show, is closely related to some others basic problems, such as Agent Election, Labelling and
Rendezvous in such a way that solving any one of these problems will allow us to solve all the others too. In this paper,
we design efficient and generic protocols that can solve these problems, irrespective of the graph topology, where the
cost of the algorithm is measured in terms of the total number of moves (or edge traversals) made by the agents.

1.1. Our results

We first show that solving the Labelled Map Construction problem is as difficult as solving the related problems
of Agent Election, Labelling and Rendezvous. This allows us to determine the necessary conditions that need to be
satisfied for solving the LMC problem in an arbitrary graph. For instance, the agents need to have the prior knowledge
of the value of n (the number of nodes in the graph) or else k (the number of agents). However, even with this
knowledge, it is not always possible to solve the problem in cases where gcd(n, k) > 1. But if the value of n and k
are co-prime with each other, we can always have a guaranteed solution to the Labelled Map Construction problem.

We present a protocol that will allow a team of k anonymous agents scattered in an unknown unlabelled graph of n
nodes and m links to construct a map of the graph, and elect a leader among the agents, using no more than O(m · k)

edge traversals. We then show that the complexity of this algorithm can be improved to O(m log k), when both n and
k are known a priori to the agents (or at least the value of gcd(n, k) is known along with either n or k).

The algorithms presented in this paper are generic protocols which can be executed on arbitrary graphs. In fact, we
do not assume any prior knowledge of the environment except the knowledge of the network size or the number of
agents present. Our algorithms are designed for one of the computationally weakest model where both the nodes of
the graph and the agents are anonymous. Further, our solutions are deterministic and include mechanisms for explicit
termination detection (even for those cases which are unsolvable).

36 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

In Section 2.2 we formally describe the Labelled Map Construction and other related problems, and discuss their
relationship. In Section 3, we give an algorithm for collaborative exploration of the graph by multiple agents that
uses only a single bit of whiteboard memory and makes O(m) moves. We then extend this algorithm, in Section 4,
to construct a spanning tree of the graph, elect a leader among the agents and build a uniquely labelled map of the
graph. We show the correctness of our protocol in Section 5 and finally in Section 6 we show how the efficiency of
the algorithm can be improved in the presence of additional knowledge available to the agents.

1.2. Related work

Most of the previous work on exploration of unknown graphs has been limited to exploration by a single agent.
In labelled graphs, each node is uniquely identifiable and hence, it is always possible to explore and map the graph
simply by traversing it. Studies on exploration of labelled graphs (or digraphs), have emphasized minimizing the cost
of exploration in terms of either the number of moves (edge traversals) or the amount of memory used by the agent
(e.g., see [1,2,13,15,26,27]). The travelling agent is sometimes modelled as a finite automaton and sometimes as a
token.

Exploration of anonymous graphs is possible only if the agents are allowed to mark the nodes in some way; except
for certain specific graphs (for example, if the graph is a tree [16,19,23]). For exploring arbitrary anonymous graphs,
various methods of marking nodes have been used by different authors. Bender et al. [8] proposed the method of
dropping a pebble on a node to mark it and showed that any strongly connected directed graph can be explored using
just one pebble, if the size of the graph is known and using O(log log n) pebbles, otherwise. Dudek et al. [17] used a set
of distinct markers to explore unlabeled undirected graphs. Yet another approach, used by Bender and Slonim [9] was
to employ two cooperating agents, one of which would stand on a node, thus marking it, while the other explores new
edges. The whiteboard model, which we use here, has been used earlier by Fraigniaud and Ilcinkas [20] for exploring
directed graphs and by Fraigniaud et al. [19] for exploring trees. In [16,20,23] the authors focus on minimizing the
amount of memory used by the agents for exploration (however, they do not require the agents to construct a map of
the graph).

There have been very few results on exploration by more than one agent. As mentioned earlier, a two agent
exploration algorithm for directed graphs was given in [9], whereas Fraigniaud et al. [19] showed how k agents
can explore a tree. In both these cases however, the agents are co-located (i.e. they start from same node at the same
time) and they have distinct identities. On the other hand, centralized algorithms for traversal of known graphs by
multiple agents have been proposed by Frederickson et al. [21] (for general graphs) and by Averbakh and Berman [5]
(for trees).

Solutions to the leader election problem based on underlying exploration algorithms were given by Korach et al.
[24] and by Afek et al. [1]. Both these papers use travelling tokens spawned by the nodes of the network, which
are similar to the mobile agents considered here. However, these solutions were for labelled networks. Another more
classical solution for the leader election problem in arbitrary but labelled networks was given by Gallager et al. [22].
For anonymous networks, the problem of electing a leader was studied first by Angluin [4] and later by Yamashita
and Kameda [30] and independently by Boldi and Vigna [10], finally leading to a complete characterization of those
graphs(digraphs) where the problem is deterministically solvable. Sakamoto [28] studied the effect of initial conditions
for performing distributed computations in anonymous networks.

In the mobile agent model, another problem which has been studied extensively is that of gathering all the agents
at a single node, called the Rendezvous problem (see [3] for a recent survey). However, most of the results obtained
for this problem use probabilistic algorithms. Among deterministic solutions to the problem, the investigations of Yu
and Yung on synchronous graphs of known topology [31] and of Dessmark et al. on synchronous rings and graphs
[14] are limited to agents with distinct labels. In the context of anonymous agents in an unlabelled network, the
only known results are those of Flocchini et al. and of Kranakis et al. on ring networks using pebbles [18,25], and
those of Barrière et al. on graphs with sense of direction [7]. The results obtained in [7] are closely related to our
results. In that paper, the authors solve the rendezvous and agent election problem in a setting similar to our model,
but with the additional assumption that the edge labelling on the graph provides a sense of direction to the agents.
In [6], Barrière et al. consider solutions to the agent election problem in presence of distinct but incomparable agent
labels.

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 37

2. Model and problems

2.1. The model

The environment to be explored by the agents is a simple undirected connected graph G = (V, E) having n = |V |

nodes. The labels (if any) on the nodes are invisible to the agents, so that the nodes are anonymous to the agents.
However, an agent visiting a node can distinguish among the various edges incident to that node. In other words,
the edges incident to a node in the graph are locally labelled with distinct port numbers. However, this labelling
is totally arbitrary and there is no coherence between the labels assigned to edges at the various nodes. Without
loss of generality, we assume that the links incident to a node u are labelled as 1, 2, 3, . . . , d(u), where d(u) is
the degree of that node. Note that each edge e = (u, v) has two labels, one for the link or port at node u and
another for the link at node v. We denote the former label as lu(e) and the later as lv(e); these two labels are
possibly different. The edge labelling of the graph G is specified by λ = {lv : v ∈ V }, where for each vertex u,
lu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines the labelling on its incident edges. We use ∆ to denote the
maximum degree of a node in the graph.

There are k agents and each agent starts from a distinct node of the graph, called its homebase. The initial placement
of agents in the graph G is denoted by a bi-coloring p : V → {0, 1} on the set of vertices, such that p(v) = 1 if
and only if v is the homebase of an agent. The agents have computing and storage capabilities and can move from a
node to any of the neighboring nodes in G. The private memory available to an agent is assumed to be large enough
to store a complete map of G. An agent at a node u can choose to leave through any incident edge e = (u, v) simply
by specifying the label lu(u, v) of the edge. On reaching the node v, the agent knows the label lv(v, u) of the edge
through which it arrived. It also knows the number of agents present at node v and can communicate directly with the
other agents present in that node, if any. The agents are anonymous in the sense that they do not have distinct names or
labels. They execute a protocol (the same for all agents) that specifies the computational and navigational steps. They
are asynchronous, in the sense that every action they perform (computing, moving, etc.) takes a finite but otherwise
unpredictable amount of time.

An agent can communicate with other agents by leaving a written message at some node which can be read by
any agent visiting that node. Thus, in our model, each node of the network is provided with a whiteboard, i.e., a
local storage where agents can write and read (and erase) information; access to a whiteboard is restricted by fair
mutual exclusion. The whiteboards are also used for marking the nodes. Initially, the homebases of the agents are
marked.1 Note that the amount of whiteboard memory available at a node may be, in general much smaller compared
to the private memory of an agent; for example, the algorithms presented in this paper require only O(log n) bits of
whiteboard memory.

Initially, the agents do not know the graph or its topology. The minimum initial knowledge available to each agent
is either the size of the graph, n, or the total number of agents present, k (or both). It is possible that different agents
start with different initial knowledge (e.g. some with the value of n and some with that of k).

2.2. Problems and constraints

We now show the relationship between the LMC problem and some other well-known problems under the same
setting. For each of the problems that we consider, we represent an instance of the problem with the tuple (G, λ, p)

where G, λ and p are as defined above. A solution to a given problem instance is a deterministic algorithm such
that when each agent individually executes the algorithm, on termination of the algorithm, the states of the agents
and the contents of the whiteboard satisfy certain conditions (these are specific to the particular problem as described
below). An agent terminates its individual execution when it reaches one of the designated final states at which point
it is not required to perform any further computation. We say that the algorithm has terminated when every agent
has terminated its individual execution. The knowledge that the algorithm has terminated (i.e. knowledge of global
termination) may not be available to each individual agent. In other words, we do not require global termination
detection for the problems that we consider here. We only require each agent to terminate its individual execution and
be aware of the fact it has terminated.

1 This marker only denotes that the node is the homebase of some agent, and the marks on all the homebases are identical.

38 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

We now define each problem in terms of the conditions to be satisfied on termination of any proposed solution
algorithm for the problem.

• The Labelled Map Construction problem: A given instance (G, λ, p) of the LMC problem is said to have been
solved when each agent obtains a labelled map of the graph, (with the initial position of this agent marked in it)
such that the label assigned to any particular node is the same in all the maps.

• The Labelling (LBL) problem (assigning unique labels to the nodes of an unlabeled graph): A given instance
(G, λ, p) of the Labelling problem is said to have been solved when the whiteboard of each node is marked with a
label and no two nodes have the same label.

• The Agent Election (AEP) problem (electing a leader among the agents): A given instance (G, λ, p) of the AEP
problem is said to have been solved when exactly one of the k agents is in the final state ‘LEADER’ and all other
agents are in the final state ‘FOLLOWER’.

• The Rendezvous (RV) problem (gathering all the agents together in one node): A given instance (G, λ, p) of the
Rendezvous problem is said to have been solved when all the k agents are located in a single node of G.

• The Spanning Tree Construction (SPT) problem (constructing a spanning tree of the graph): A given instance
(G, λ, p) of SPT problem is said to have been solved if at each node of G, each incident edge is marked as either
a Tree-edge or Non-Tree-edge, such that the set of Tree-edges, T represents a spanning tree of the graph G.

For any of the above problems, an instance (G, λ, p) of the problem is said to be solvable if there exists a
deterministic algorithm A such that every execution2 of algorithm A on that particular instance, succeeds in solving
the problem. We now discuss the conditions for solvability of the above problems.

Theorem 2.1. The following problems are computationally equivalent such that for any given instance (G, λ, p)

either all of them are solvable or none of them are solvable: (i) Labelled Map Construction, (ii) Agent Election, (iii)
Labelling, and (iv) Rendezvous.

Proof. LMC => RV: Once the LMC problem has been solved, Rendezvous can be solved too. When each agent has a
uniquely labelled map of the graph, the agents simply move to the node having smallest label in the map, thus solving
Rendezvous.
RV => AEP: Once the agents rendezvous at a single node v, the mutual exclusion property of the whiteboards allows
us to break the symmetry among the agents and elect a leader. The agent that first writes to the whiteboard of node v

becomes ‘LEADER’, while all other agents become ‘FOLLOWER’.
AEP => LBL: Once a leader agent is elected, this agent can explore the graph, assigning (i.e., writing) unique labels
to the nodes, while the other agents remain stationary in their homebases.
LBL => LMC: Once the graph is labelled, each agent can execute a depth-first traversal of the labelled graph, to
obtain a uniquely labelled map of the graph. �

Notice that even though the problems of Labelling, Rendezvous, Agent Election and Labelled Map Construction
are computationally equivalent in our model, the SPT problem is not equivalent to these four problems in general.

The relationship among these problems can be used to determine the conditions for solvability of the LMC problem,
based on previous results for the election and rendezvous problems (see [7,18]).

Lemma 2.1. There exists no algorithm that can solve any arbitrary solvable instance of the LMC problem, without
the knowledge of neither the value of n (the size of the graph) nor k (the number of agents present).

Lemma 2.2. For k agents dispersed in a graph of size n, the LMC problem is not solvable in arbitrary graphs, unless
gcd(n, k) = 1 (i.e., n and k are co-prime).

Notice that when n and k are not co-prime, it is possible that the agents are initially placed in exactly symmetrical
positions with respect to each other (provided that the graph itself is symmetrical; e.g. a ring), such that no
deterministic algorithm can break the symmetry among the agents and achieve leader election. On the other hand,
if n and k are co-prime, we can always solve the AEP or LMC problems, irrespective of the graph topology or the

2 Recall that we are considering an asynchronous system where different possible execution sequences can give different results.

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 39

initial placement of agents. (The use of primality for symmetry breaking in distributed systems is quite common,
see [11] for example.) However, notice that the conditions of Lemma 2.1, namely the prior knowledge of n or k, is
necessary even if we restrict ourselves to solving only those instances of the problem where gcd(n, k) = 1.

In the following, we present algorithms for solving the LMC problem when the agents have prior knowledge of
the value of at least one of n and k. Our algorithms are effective in solving every instances of the problem where
gcd(n, k) = 1.

3. Distributed traversal

As a preliminary step in our solution protocol, we will have the agents perform an initial cooperative exploration of
the graph. We want the agents to explore the graph collectively, in such a way that the total number of edge traversals
is minimized. Each agent can traverse an area around its homebase, while avoiding the parts being explored by the
other agents. During the exploration, the agent needs to remember the path to its homebase, so that it does not get lost.
Each agent stores in its memory the sequence of labels (in order) of edges traversed by it, starting from the homebase.
We call this sequence of labels the Exploration-Path (or, simply the Path). When an edge e = (u, v) is traversed by
the agent from u to v, the label λv(e) is appended to the Path. This enables the agent to return back to the previously
visited node (i.e. u) whenever it wants to. When it does so, the agent is said to have backtracked the edge e and the
label λv(e) is deleted from the Path. So, at all times during the traversal, the Path contains the sequence of labels of
the links that an agent has to traverse (in reverse order) to return to its homebase from the current node.

Each agent on wake-up, starts traversing the graph from its homebase and marks each of the visited nodes that
are previously unmarked. (Recall that the homebases are already marked.) The agent also builds a partial Map of the
territory that it marks. Those edges included in the territory T , are marked as ‘T’-edge and those not included are
marked as ‘NT’-edge. The algorithm executed by each agent is the following:

Algorithm EXPLORE

1. Set Path to empty;
Initialize the Territory T as single-node graph consisting of the homebase;

2. While there is another unexplored edge e at the current node u,
mark link λu(e) as a ‘T’-edge and then traverse e to reach node v;
If v is already marked,

return back to u and re-mark the link λu(e) as a ‘NT’-edge;
Otherwise

mark v as explored and mark λv(e) as a ‘T’-edge;
Add link λv(e) to Path;
Add edge e and node v to the territory T ;

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return T ;

The above algorithm is a distributed version of the standard depth-first-search algorithm [29]. The only difference
here is that since there are multiple anonymous agents, an agent does not distinguish between nodes visited by itself
and nodes visited by other agents. When k agents, starting at distinct nodes of the graph G, independently execute the
above algorithm, the following results can be observed. First note that the execution of each agent terminates in finite
time, because every edge that is traversed, is marked and G is finite.

Lemma 3.1. When every agent has terminated its execution of algorithm EXPLORE, the following holds:

(a) If some node u was marked by an agent A, then each edge incident to u was traversed by agent A.
(b) Every node in the graph is marked by exactly one agent.
(c) The territory marked by any agent is a connected subgraph of G.
(d) There are no cycles in G consisting of only ‘T’-edges.

40 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

Proof. Part(a): During algorithm EXPLORE, if an agent A marks a node u, then each incident link at u is either
marked by the agent A, or remains unmarked. (Thus, even if an edge e = (u, v) is traversed from v to u by another
agent B, the link lu(e) at u could be marked only by agent A.) Whenever there are unexplored (i.e. unmarked) links at
the current node u, agent A traverses one of the unexplored edges and whenever an agent leaves a node u through an
unexplored link, it eventually returns to u at some time during the traversal. Thus, each link incident to u is traversed
by A before it stops. �
Part(b): From part(a), we know that an agent visits all neighbors of a node that it marks. Also, we know that whenever
an agent visits a node v, if v is unmarked, the agent marks it. To begin with, an agent’s homebase is already marked
and whenever a node is marked all its neighbors are eventually marked. Thus, each node would be marked by some
agent. Note that due to the mutual exclusion property of whiteboards, a node cannot be marked by more than one
agent. �
Part(c): This follows immediately from the algorithm.
Part(d): If an edge e = (u, v) was marked as ‘T’-edge, then both nodes u and v were marked by the same agent. This
means that ‘T’-edges marked by distinct agent are never incident on the same node. So, if there is a cycle consisting
of ‘T’-edges, all these edges were marked by a single agent A. Suppose e = (u, v) was last edge to be marked in
this cycle, then node v was unexplored when A reached it and thus, all the edges incident at v were unmarked. This
contradicts the assumption that e was the last edge to be marked. �

Lemma 3.2. The total number of edge traversals made by the agents in executing algorithm EXPLORE, is at most
4 · m, irrespective of the number of agents.

Proof. We consider each edge of the graph G and calculate how many it has been traversed by some agent during
algorithm EXPLORE. Each ‘T’-edge is traversed twice — once in the forward direction and once while backtracking.
Each ‘NT’-edge is traversed four times, twice from each side. As there are (n − k) ‘T’-edges, the total number of
moves (i.e. edge traversals) made by the agents is (4m − 2n + 2k). �

When an agent A finishes executing algorithm EXPLORE, A has a map of the territory marked by it. Lemma 3.1
says that the territory of each agent is a tree, the territories marked by different agents are all disjoint, and together
they span the whole graph. So, the distributed traversal of the graph by multiple agents creates a spanning forest of
the graph. The edges belonging to the territory of some agent are marked as ‘T’-edges (i.e. tree-edge) and those edges
not included in any territory as ‘NT’-edges (i.e. Non-Tree-edge). Note that the nodes at the two end-points of an
‘NT’-edge may either belong to the same tree or two different trees.

4. Merging the maps: Spanning tree construction

To obtain the map of the whole graph, the maps constructed by the agents after the execution of algorithm
EXPLORE need to be merged somehow. The task of merging together the maps (i.e. the territories) of the agents,
is complicated by the fact that the maps constructed by two agents may be exactly identical. In addition, some of the
‘NT’-edges may be connecting two nodes of the same tree. While merging the maps, we want to avoid such cyclic
edges. Thus, we first construct a spanning tree of the graph by joining the trees marked by different agents.

In this section, we show how the agents can construct a spanning tree of the graph and then finally use it to
obtain a complete map of the graph. Here, the reader may recall the well-known distributed algorithm for minimum
spanning tree construction (MST) given by Gallager, Humblet and Spira [22], where the spanning tree is constructed
by repeatedly joining adjacent trees using the unique edge of minimum weight connecting them. Such an approach,
unfortunately, is not applicable in our setting, since neither the edges nor the nodes have unique labels, making it
impossible for the agents to agree on a unique edge for joining two trees.

We present below a distributed algorithm called MERGE-TREE, for solving the LMC problem using procedure
EXPLORE as a preliminary step. The algorithm proceeds in phases, where in each phase, some agents become passive,
i.e. they stop participating in the algorithm. Agents communicate by writing certain symbols on the whiteboards,
including two special symbols which we call the ‘ADD-ME’ symbol and the ‘DEFEATED’ symbol. An agent can
be in one of three states: Active, Defeated or Passive. Each agent is active at the time it starts the algorithm, but it
may become defeated and subsequently passive, during some phase of the algorithm. When an agent becomes passive
during a phase, it keeps waiting at its current location till it receives a termination notification from some other agent.

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 41

At the start of the algorithm, every agent knows the value of k. (We show later knowledge of the value of n instead of
k would also suffice.)

Algorithm MERGE-TREE

Phase 0 : An agent A on startup executes procedure EXPLORE to obtain a map of its territory and a count of the
number of nodes marked. The agent constructs a Token which is of the form (Ph, Nc, Ac) where Nc (Node-count) is
the count of the number of nodes marked by it, Ac (Agent-count) is the number of agents in its territory (initially set
to 1) and Ph is the phase number which is also initially set to 1. In case k = 1 (or equivalently, Nc = n), the agent can
immediately terminate the algorithm by executing procedure COMPLETE-MAP. Otherwise the agent begins the first
phase.

In phase i , 1 ≤ i < k, an agent A (if active) executes the following steps:

STEP 1 — ‘WRITE-TOKEN’ : Agent A does a depth-first traversal of its own territory using the map; recall that a
territory is a tree. During the traversal the agent writes its Token on the whiteboard3 of each node in its tree.

STEP 2 — ‘COMPARE TOKEN’ : During this step, the agent compares its Token with the Tokens in adjacent trees.
Agent A starts a depth-first traversal of its territory. During the traversal, whenever it finds an ‘NT’-edge e = (u, v)

incident to some node u in its territory, it traverses the edge e to reach the other end v, compares its Token with the
Token at v, and takes an appropriate action before returning back to u. If it does not find any Token at node v (or, finds
a Token from the previous phase i − 1), it waits till the Token for phase i is written at v. On the other hand, if it finds
a Token from phase i + 1 at node v, it ignores that Token, goes back to u and continues with the traversal.

Two Tokens from the i-th phase, T1 = (i, N1, K1) and T2 = (i, N2, K2), are compared as follows. Token T1 is said
to be larger than Token T2 if either N1 > N2, or N1 = N2 and K1 > K2. The two tokens are said to be equal if both
N1 = N2 and K1 = K2.
After the comparison of Tokens, agent A takes one of the following actions:

[<] If the Token at the other side is larger, it writes a ‘ADD-ME’ symbol on the whiteboard of node v and returns
to node u. It remembers4 node u as the terminal node and edge e as the bridge edge. Agent A then performs a
complete traversal of its territory writing ‘DEFEATED’ symbols on each node in its territory. It now becomes
defeated. (The actions taken by a defeated agent are described below.)

[=] If the Token at the other side is equal to its own Token, agent A ignores the Token, returns to its own tree and
continues with its traversal.

[>] If the Token at the other side is smaller, agent A waits at node v till it finds a ‘DEFEATED’ symbol. On
finding a ‘DEFEATED’ symbol, it goes back to u and continues with the traversal.

If agent A becomes defeated then it takes the following actions. It continues with the traversal and Token
comparisons — whenever it finds a Token which is smaller or equal to its own Token, agent A takes the same action
as an active agent; but, when it finds a Token that is larger than its own Token, agent A ignores this Token. (So, a
defeated agent never writes any ‘ADD-ME’ symbol.) After completing the traversal, the defeated agent A returns to
the terminal node u and marks the bridge edge e as a ‘T’-edge. It then traverses edge e to reach the other end, say v.
It adds edge e to its map and designates the vertex corresponding to node v as the junction point in the map. At this
stage, the agent A becomes passive and does not participate in the algorithm anymore.

During the traversal, whenever an active (or a defeated) agent A finds an ‘ADD-ME’ symbol at some node w in its
tree, it takes the following action. It deletes the ‘ADD-ME’ symbol and waits at node w till the agent B (which wrote
‘ADD-ME’) returns back to w. Agent A then acquires all the information available in agent B’s memory, including
B’s Token, its map and all other Tokens and maps acquired earlier by agent B. Agent A also remembers the vertex
corresponding to node w, as the location where it acquired this new information. (This vertex is called the acquisition
point.)

3 Any previously written Token or symbol is deleted from the whiteboard.
4 The agent remembers a node by marking in its map.

42 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

STEP 3 — ‘UPDATE TOKEN’ : If agent A completes the second step without becoming passive, it extends its
territory and updates its Token as follows. Agent A adds together the Node-count and Agent-count values respectively,
from all the acquired Tokens, including its own Token, to get the new values of Node-count Nc, and Agent-count Ac.
The new phase number is obtained by incrementing Ph by one. Agent A also constructs a new map by merging the
acquired maps with its own map. Note that the agent has the information about how to merge the maps.5 (While
merging the maps, the agent may have to relabel some of the vertices of the maps, to ensure unique labelling of the
vertices.) The resulting map constructed by the agent defines its new territory.

On updating the Token, if the agent finds that the new agent-count is equal to k (or equivalently, the node-count is
equal to n), then it reaches the termination condition. Otherwise, it proceeds with the next phase.

Phase k : An agent which reaches this phase terminates the algorithm after sending failure notification to all agents in
its territory. We shall show that in this case, gcd(n, k) > 1 (see Lemma 5.4)
When an agent A reaches the termination condition, it becomes the leader agent; at this stage, it has a spanning tree
of the whole graph. Finally, it executes the following procedure:

Procedure COMPLETE-MAP

1. The leader agent executes a depth-first traversal of the spanning tree, writing node labels on the appropriate
whiteboards.

2. The leader agent traverses the graph, adding the non-tree-edges to the map.
3. The leader agent traverses the spanning tree to communicate the full map to all the agents.

Remark: In the above algorithm, the knowledge of either n or k is used to determine when an agent has reached
termination condition (i.e., when the algorithm succeeded). However, for determining the failure condition (i.e. phase
number = k), the agents need to know the value of k. In case k is not known and n is known instead, then the agents
would use the following equivalent condition. If an agent’s node-count Nc does not change for r consecutive phases
where r ≥ n/Nc then, the agent can assume that it has reached phase k and consequently it can terminate the algorithm
after failure notification. We shall show later (see Lemma 5.5) that this assumption is always correct.

5. Analysis of the algorithm

In this section, we show the correctness of our algorithm and analyze its complexity. We use the following notations.
Gi A denotes the subgraph of G that corresponds to the territory of agent A at the time when it reaches the end of phase
i (after UPDATE-TOKEN). If A becomes passive in phase i , then Gi A = φ. We denote by Γi the set of all agents
which start phase i in active state. We say that the algorithm reaches phase i , if there is at least one agent that starts
phase i .

Whenever an agent A becomes defeated on comparing its Token with the Token of an agent B, during phase i , we
say that agent A was defeated by agent B in phase i . In that case, we know that both A and B were active at the start
of phase i and B’s Token in phase i was larger than A’s Token in phase i .

The following facts imply that there are no deadlocks in algorithm MERGE-TREE.

Lemma 5.1. (a) An (active) agent that starts phase i either completes the phase, or becomes passive during the phase.
(b) At the end of every phase i reached by algorithm MERGE-TREE, there is always at least one active agent.

Proof. Part(a): We show that there cannot be any cyclic waiting among the agents. Suppose, for the sake of
contradiction, that there is a group of agents A1, A2, . . . , At such that for each 1 ≤ j ≤ t − 1, A j waits for A j+1, and
At waits for A1. We represent these agents as vertices of a graph and we draw directed (colored) arcs to denote which
agent waits for whom. (The color of the edge denotes the type of waiting.) There are three situations when an agent
A, in phase i ≥ 1, has to wait at a node v for some agent B:

1. Agent A found no Token, or a Token from phase (i − 1) at node v and it is waiting for the Token for phase i to be
written by agent B. (This is denoted by a Blue arc.)

5 The maps are disjoint except for the joining vertex.

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 43

2. Agent A is waiting at node v, after finding an ‘ADD-ME’ symbol written by B. (This is denoted by a Yellow arc.)
3. Agent A found agent B’s Token (at node v) to be smaller than its own Token. This indicates A is waiting for agent

B to write a ‘DEFEATED’ symbol at v. (This is denoted by a Red arc.)

Note that in first case above, agent B is either in a lower phase than A, or agent B is yet to complete STEP 1 of
phase i . However, in the other two cases, both A and B are in STEP 2 of the same phase i and B has a smaller Token
than A in that phase. Also, note that an agent can be waiting only if it is in STEP 2 (i.e. the COMPARE-TOKEN step)
of some phase.

So, each A j , 1 ≤ j ≤ t , is in STEP 2 of some phase and for any 1 ≤ x, y ≤ t ,

• there is a Blue arc from Ax to Ay if and only if Ay is in smaller phase than Ax .
• there is a Red or Yellow arc from Ax to Ay if and only if Ay is in the same phase as Ax but has a smaller Token

than Ax .

Let us first consider the case when at least one of the arcs in the cycle is blue. Let Ax be the first node with a blue
arc in the cycle (connecting Ax to Ax+1). Let Ax be in phase i . By definition of red and yellow arcs, we then know
that all Ay with y < x are in the same phase i . If x = t , we immediately have a contradiction because, by definition
of blue arc, A1 would have to be in a phase smaller than i . Let us then assume that 2 ≤ x ≤ t −1. In this case we have
a contradiction too, because by definition of blue arc, Ax+1, Ax+2, . . . , At must be in a smaller phase than phase i .
So, there can neither be a blue nor a red (or yellow) arc from At to A1. Thus, we cannot have a cycle containing any
blue arc.

We now consider the case when the cycle is composed of yellow and red arcs only. In this case, all the agents in the
cycle are in the same phase i , and each agent has a smaller Token than the agent on its left — which is not possible!

So, we conclude that there cannot be any cyclic waiting among the agents. Each agent in phase i either reaches the
end of the phase or becomes passive.

Part(b): Note that an agent A can be defeated by an agent B during phase i , only if B’s Token in phase i is larger
than A’s Token in phase i . So, an agent A having the largest Token in phase i cannot be defeated in phase i . Thus,
agent A remains active at the end of phase i . �

Next, we show that the algorithm MERGE-TREE terminates in finite time, and whenever gcd(n, k) = 1, there is
exactly one leader agent on termination and the map constructed by the leader agent is a spanning tree of the graph G.

Lemma 5.2. The following holds for any phase i that is reached by the algorithm:

1. For each A ∈ Γi , Gi A is a tree.
2. For any A, B ∈ Γi , if A and B are distinct, then Gi A ∩ Gi B = φ.
3. Hi =

⋃
A∈Γi

Gi A, is a subgraph of G having the same vertex set as G.

Proof. For phase i = 0, the territory obtained by each agent in phase i is the same as that obtained from the EXPLORE
algorithm. Thus, the given conditions hold in phase i = 0, as proved in Section 3. We assume that these conditions
hold at some phase i = r that is reached by the algorithm and we show that each of these conditions continue to hold
at phase i = r + 1, if the algorithm reaches phase r + 1.

For any agent A which reaches phase r + 1, the following holds: If agent A did not find any ‘ADD-ME’ symbol
during phase r , then G(r+1)A = Gr A. On the other hand, if agent A reads an ‘ADD-ME’ symbol in phase r + 1, then
it acquires the territory of some defeated agent B that wrote the ‘ADD-ME’ symbol in phase r + 1. The territory of
such a defeated agent B consists of Gr B combined with a single edge e that connects a node in Gr A to a node in Gr B
(where Gr A and Gr B are disjoint trees, by our assumption). Thus, the new territory of A at the end of phase r + 1 is
still a tree.

Agent A acquires some territory from agent B in phase r + 1, only if it defeats agent B in phase r + 1. Note that
an agent can be defeated only once and by only one agent. Thus, if A and C are two agents that reach the end of phase
r + 1, then both of them could not have acquired the territory of the same agent B. This implies that the territories of
the agents A and C remain disjoint at the end of phase r + 1. Thus, G(r+1)A ∩ G(r+1)C = φ for any two agents A and
C that reaches the end of phase r + 1.

Note that whenever an agent becomes passive in phase r + 1, its territory is acquired by the agent that defeated it.
So, each node that was contained in the territory of some active agent at the end of phase r , would be contained in

44 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

the territory of some active agent at the end of phase r + 1. In other words Hr+1 ⊇ Hr . Thus, the third condition also
holds for phase i = r + 1. �

For an agent A ∈ Γi , we define NodeCount(Gi A) to be the number of nodes in Gi A. Notice that this is equal to
the Nc part in the Token of agent A for phase i + 1. Similarly, AgentCount(Gi A) is defined to be the number of nodes
in Gi A that are agent homebases. This is equal to the Ac part in the Token of agent A in phase i + 1. We have the
following corollary as a consequence of the above lemma:

Corollary 5.1. For any phase i reached by the algorithm, we have∑
A∈Γi

NodeCount(Gi A) = n and
∑
A∈Γi

AgentCount(Gi A) = k.

Two agents A and B are said to be neighbors in phase i if G contains an edge e = (u, v) such that Gi A contains
vertex u and Gi B contains vertex v. Note that edge e is not included in either Gi A or Gi B (as Gi A ∩ Gi B = φ), so e
remains marked as an ‘NT’-edge at the end of phase i .

Lemma 5.3. If gcd(n, k) = 1 then, for any phase i ≥ 1 with |Γi | ≥ 2, at least one agent B ∈ Γi , becomes passive
during phase i .

Proof. If t = |Γi | ≥ 2 then t agents are active at the end of phase i − 1. Notice that all the t agents cannot have
identical node-counts as well as identical agent-counts at the end of phase i − 1 (because then gcd(n, k) ≥ t ≥ 2, by
Lemma 5.2). So, there must be two (neighboring) agents A and B who have distinct node-counts or, distinct agent-
counts. These two agents would have different Tokens in phase i and thus, one of them would be defeated in the Token
comparison during phase i . �

So, if the condition gcd(n, k) = 1 is satisfied, then in each phase, at least one of the active agents becomes passive,
until in some phase i , there is only a single active agent left (by Lemma 5.1). The territory of this agent A would be
the tree Gi A containing all the nodes of G (due to Lemma 5.2), and the node-count and agent-count of A would equal
n and k respectively. Thus, agent A would reach the termination condition and the algorithm would terminate. Notice
that the algorithm always terminates within k phases, irrespective of the values of n and k.

Lemma 5.4. If an agent A reaches phase k, then gcd(n, k) > 1 and the territory of every active agent is of the same
size.

Proof. Due to Lemma 5.3, if gcd(n, k) = 1, then at least one agent is defeated in each phase and thus, at most one of
the k agents can reach phase k − 1 and no agent can reach phase k. On the other hand, if some agent reaches phase k,
then there was some phase i < k during which no agent was defeated, i.e., every active agent had the same token in
phase i . Thus, in all subsequent phases, the node-count of the agents cannot increase. �

Lemma 5.5. If an agent A has the same territory (of size z) for r > 2 consecutive phases (say, from phase i to i + r),
where r ≥ n/z, then gcd(n, k) > 1 and agent A has completed at most 2k phases of the algorithm.

Proof. If agent A has the same territory in phase i and i +1, then all the neighboring agents of A have the same token.
If agent A has the same token for r phases, then there are at least r − 1 other active agents having the same token and
thus, the same node-count z. However, since r · z ≥ n and the territories of active agents are disjoint, there can be at
most r active agents in phase i . Thus there are exactly r active agents in phase i , each having the same node-count
z = n/r and the same agent-count k/r . Hence gcd(n, k) ≥ r > 1. Also, note that both i and r are less than k, so i + r
is at most 2k. �

From Lemma 5.4 and Lemma 5.5, it follows that algorithm MERGE-TREE fails only if gcd(n, k) > 1 and even in
that case there are O(k) phases. Combining all the above lemmas, we have the following results:

Theorem 5.1. The algorithm MERGE-TREE terminates after at most O(k) phases, and if gcd(n, k) = 1 then exactly
one agent A reaches the termination condition; when this happens, Gi A represents a spanning tree of G.

Theorem 5.2. After executing the procedure COMPLETE-MAP, every agent has a uniquely labelled map of the graph.

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 45

These theorems prove the correctness of our algorithm.

Theorem 5.3. The number of edge traversals made by the agents during algorithm MERGE-TREE is O(k ·m), where
m in the number of edges in the graph G.

Proof. During procedure EXPLORE, the agents perform at most 4m moves, in total. During each phase of the
algorithm MERGE-TREE, each ‘T’-edge is traversed twice in STEP 1 and twice in STEP 2, during the depth-
first traversals; Each ‘NT’-edge is traversed at most four times in STEP 2. This accounts for 4m moves per phase
and thus a total of O(k · m) moves. Other than that, each defeated agent performs one extra traversal of its tree to
write ‘DEFEATED’ messages. These extra moves would account for O(k · n) edge traversals. Finally, procedure
COMPLETE-MAP takes O(m) edge traversals. �

As for the memory requirement of our algorithm, only O(log n) bits of whiteboard memory are needed per node of
the graph, because the size of a token is O(log n). Notice that it is not necessary to explicitly mark the ‘T’-edges and
‘NT’-edges by writing this information on the whiteboards; the ‘T’-edges and ‘NT’-edges can be recognized using
the map that is available with every agent.

6. Reducing the number of phases

The algorithm from the previous section always succeeds in electing a unique leader, whenever the values of n and
k are co-prime. However, if gcd(n, k) > 1, it is not always possible to break the symmetry between the agents. In
this case, the agents must detect this and terminate the algorithm to avoid a possible deadlock (or live-lock) situation.
Now, suppose the agents have the prior knowledge that gcd(n, k) = 1, then we can simplify the algorithm and reduce
its complexity by allowing only those agents which defeat some other agent during some phase i to proceed to phase
i +1. This revised algorithm is described below. As before, the algorithm proceeds in phases and during the execution
an agent can be in one of the states — Active, Passive, or Leader. Every agent begins in state Active. For this algorithm,
we assume that each agent has the initial knowledge of the value of gcd(n, k) and the value of at least one of n or k.
(If the agents know both n and k that is sufficient, because they can compute gcd(n, k) in that case.)

Algorithm Explore-&-Capture

If gcd(n, k) > 1, then declare “Failure” and terminate the algorithm. Else, proceed with the first phase. In each phase
i ≥ 1, an agent A (if Active) executes the following steps:

STEP 1: Agent A executes procedure EXPLORE using the phase number i as a tag for marking the nodes as explored.
During the execution of EXPLORE, if agent A finds some node v marked with a phase number j < i then v is
considered to be unmarked. In this case, agent A overwrites such marks with its own mark.

The territory obtained by an active agent A at the end of procedure EXPLORE during phase i , is denoted by Gi A.
Let ni = NodeCount(Gi A) and ki = AgentCount(Gi A) be respectively, the number of nodes and the number of
homebases in Gi A. The token for agent A in this phase is Q A = (i, ni , ki).

If ni = n (or equivalently ki = k) then agent A changes to state Leader and executes procedure COMPLETE-MAP.
Otherwise, it continues with the next step.

STEP 2: An active agent A performs a depth-first traversal of its territory Gi A and writes the token Q A on the
whiteboard of each node in the territory.

STEP 3: At the start of this step, agent A initializes its Win-Count to zero and then starts another depth-first traversal
of its territory. During the traversal, whenever it finds an ‘NT’-edge e = (u, v) incident to the current node u, agent A
traverses e to visit node v and reads the whiteboard at node v. Agent A waits at node v until it finds a token from phase
i , say Q B (or an explored mark from a higher phase), and then agent A takes the following action, before continuing
with the traversal:

• If (Q B > Q A) agent A writes ‘ADD-ME[i]’ at the node v, traverses its territory writing ‘DEFEATED[i]’ on each
node in Gi A and then changes to passive state.

• If (Q B < Q A) then agent A waits at node v, until it finds a ‘DEFEATED[i]’ symbol written at node v.

46 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

• If there is an explored(j) mark from a phase j > i , then agent A aborts this step, traverses its territory writing
‘DEFEATED[i]’ on each node in Gi A and then changes to passive state.

(If Q B = Q A, then agent A does not need to take any action at node v and it simply continues with the traversal.
Notice that if e is a cyclic ‘NT’-edge then A and B are not distinct agents.)

During this step, whenever agent A finds an ‘ADD-ME[i]’ symbol written in any node of Gi A, it deletes the ‘ADD-
ME[i]’ symbol and increments its Win-Count. When agent A completes this step, if the Win-Count of agent A is still
zero then it changes to passive state.

Any agent that becomes passive in this phase returns to its homebase and waits until it receives the map from the
Leader agent. Those agents which did not become passive, continue with the next phase. Finally, when an agent
becomes Leader, it executes procedure COMPLETE-MAP to terminate the algorithm and provide a copy of the map
to every other agent.

In the following, we show the correctness of this algorithm. We define Γi similarly as before to denote the set of
agents that reach phase i ≥ 1. We say that agent A defeated agent B (or agent B was defeated by agent A) in phase
i , if agent B wrote ‘ADD-ME[i]’ on the whiteboard of some node ∈ Gi A. We also give a more precise definition of
what is meant by neighboring agents. At any instant during the execution of the algorithm, two (active) agents A and
B are said to be neighbors if there exists an ‘NT’-edge e = (u, v) ∈ G, such that u is marked by agent A and v is
marked by agent B. (Here A and B may not be distinct agents, i.e. an agent can be its own neighbor.)

Lemma 6.1. The following holds at any time during the execution of algorithm Explore-&-Capture.

(a) If an agent A is in phase i > 1 then each of its neighbors must be in phase i − 1 or higher.
(b) If an agent A is in STEP 3 of phase i then each of its neighbors must be in phase i or higher.

Proof. Part(a): If agent A has completed phase i − 1, then during STEP 3 of that phase, it must have visited the
territory of each neighbor and waited for the token for phase i − 1 to be written. This means that each neighbor has
reached phase i − 1.
Part(b): Suppose agent A is in STEP 3 of phase i and one of its neighbor B is in phase j < i . In that case, during
STEP 1 of phase i agent A must have overwritten the nodes in B’s territory with its own mark. So, agents A and B
cannot be neighbors — a contradiction! �

Observation 6.1. For any phase i ≥ 1 reached by the algorithm Explore-&-Capture, Lemma 5.2 and Corollary 5.1
still hold.

This means that the territories of the agents in any phase i are disjoint and they span all the nodes of the graph G.
Notice that the territories in phase i are defined by a fresh execution of EXPLORE, that is independent of the previous
executions of procedure EXPLORE (due to the use of phase numbers). Thus, the above observation follows from the
results proved for algorithm EXPLORE in Section 3.

Lemma 6.2. For any phase i ≥ 1 with |Γi | = r ≥ 2, the following holds: (a) At least one agent reaches phase i + 1.
(b) At most r/2 agents can reach phase i + 1.

Proof. Part(a): If the algorithm reaches phase i ≥ 1 then the condition gcd(n, k) = 1 holds and thus, there must be
two neighboring agents A and B with distinct tokens in phase i . (This follows from the above observations and the
fact that the graph G is connected.) Thus the agent having the smaller token among A and B would be defeated when
it finds a larger token during STEP 3. Since an agent can be defeated only by another agent from the same phase
having a strictly larger token, it follows that there must be, in phase i , a sequence of agents A1, A2, . . . , At such that
for 1 ≤ r < t , agent Ar was defeated by agent Ar+1 and At remained undefeated. So, unless agent At became passive
on encountering an explored(j) mark from a higher phase (in which case we already have an agent which reached
phase i+1), agent At would have Win-Count > 0 at the end of STEP 3 and thus it would reach phase (i + 1).
Part(b): If an agent A ∈ Γi reaches phase (i + 1), then it must have defeated some other agent in phase i . Clearly, an
agent can be defeated by at most one agent. This means that for every agent A ∈ Γi which reaches phase (i + 1), there
is another agent B ∈ Γi that became passive in phase i . Hence the result follows. �

S. Das et al. / Theoretical Computer Science 385 (2007) 34–48 47

Theorem 6.1. Assuming that the agents have prior knowledge of both n and k, algorithm Explore-&-Capture
terminates after at most log(k) phases, solving the LMC problem if and only if gcd(n, k) = 1.

Proof. In case gcd(n, k) 6= 1 then every agent terminates before starting the first phase. Otherwise gcd(n, k) = 1,
then due to Lemma 6.2, there exists a phase i such that there is only one agent A ∈ Γi . Thus, in phase i , the territory of
agent A, Ti A is a spanning tree of the graph G and agent A becomes the leader and executes procedure COMPLETE-
MAP to obtain a uniquely labelled map of G. In this case, due to Lemma 6.2(b), k/2i−1 > |Γi | = 1 which implies
that i ≤ log k. Hence, the algorithm terminates in at most log k phases. �

Theorem 6.2. The number of edge traversals made by the agents during algorithm Explore-&-Capture is
O(m. log(k)) where m is the number of edges in G. The algorithm requires O(log n) memory at each node.

Proof. Using arguments similar to those for the previous algorithm, it can be shown that each edge is traversed a
constant number of times in each phase of algorithm Explore-&-Capture. Thus, there are O(m) edge traversals per
phase of the algorithm and there are at most log k phases which adds up to a total of O(m log k) traversals for the whole
algorithm. Notice that this algorithm requires the same amount of whiteboard memory as the previous algorithm, for
writing the Token. �

7. Conclusions

In this paper, we considered the problem of constructing a labelled map of an arbitrary and unlabelled graph G by a
team of identical asynchronous mobile agents initially dispersed among the nodes of the graph. Our solution works in
two stages. In the first stage, the agents independently explore and mark the graph, each obtaining a partial map of the
graph. In the second stage, the partial maps are combined to construct a map of the whole graph. Our algorithm solves
the Labelled Map construction problem, while also performing leader election among the agents and constructing a
spanning tree of the graph, under the assumption that the size of the graph, n is co-prime with the number of agents,
k. Under this assumption, the problem is always deterministically solvable irrespective of the structure of the graph G
or the initial placement of the agents on it. (Notice that the same cannot be said for the case when gcd(n, k) > 1.)

An important property of our solutions is that the agents explicitly terminate their execution even in the unsolvable
cases. For termination detection, the value of at least one of n or k must be known to the agents. We show that when
the value of both these parameters are known, it is possible to terminate earlier, thus improving the complexity of the
solution.

The problem of Labelled Map Construction (LMC) is related to several other well-studied problems such as leader
election, rendezvous, graph labelling and spanning tree construction, and any solution to the LMC problem solves
these other problems too. Previous studies on these problems have typically avoided the difficult scenario where the
system is both anonymous and asynchronous. There have been some solutions which work for specific topologies
such as ring networks (as in [18,25]). Another solution given in [7], assumes the presence of specific labelling on the
graph providing a sense of direction to the agents. Our solutions can be seen as an extension to these results because
we have made much weaker assumptions about the model, leading to more generic algorithms. Further extensions to
this work should focus on solving the problem regardless of whether n and k are co-prime or not. It is interesting to
note that there are certain specific instances of the problem which are solvable even if gcd(n, k) > 1, e.g., when the
given graph is a tree with an odd number of nodes. However, the protocols presented in this paper do not take such
specific instances into consideration.

References

[1] Y. Afek, E. Gafni, Distributed algorithms for unidirectional networks, SIAM Journal on Computing 23 (6) (1994) 1152–1178.
[2] S. Albers, M.R. Henzinger, Exploring unknown environments, SIAM Journal on Computing 29 (2000) 1164–1188.
[3] S. Alpern, S. Gal, The Theory of Search Games and Rendezvous, Kluwer, 2003.
[4] D. Angluin, Local and global properties in networks of processors, in: Proc. of 12th Symposium on Theory of Computing, STOC’80, 1980,

pp. 82–93.
[5] I. Averbakh, O. Berman, (p−l)/(p+1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective, Discrete

Applied Mathematics 75 (1997) 201–216.
[6] L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Can we elect if we cannot compare? in: Proc. 15th ACM Symp. on Parallel Algorithms

and Architectures, SPAA’03, 2003, pp. 200–209.

48 S. Das et al. / Theoretical Computer Science 385 (2007) 34–48

[7] L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Rendezvous and election of mobile agents: impact of sense of direction, Theory of
Computing Systems 40 (2) (2007) 143–162. Preliminary version in Proc. 10th Coll. on Structural Information and Communication complexity,
SIROCCO’03, 2003, pp. 17–32.

[8] M. Bender, A. Fernandez, D. Ron, A. Sahai, S. Vadhan, The power of a pebble: Exploring and mapping directed graphs, in: Proc. 30th ACM
Symp. on Theory of Computing, STOC’98, 1998, pp. 269–287.

[9] M. Bender, D.K. Slonim, The power of team exploration: Two robots can learn unlabeled directed graphs, in: Proc. 35th Symp. on Foundations
of Computer Science, FOCS’94, 1994, pp. 75–85.

[10] P. Boldi, S. Vigna, An effective characterization of computability in anonymous networks, in: Proc. of 15th Int. Conference on Distributed
Computing, DISC’01, 2001, pp. 33–47.

[11] J.E. Burns, J. Pachl, Uniform self-stabilizing rings, ACM Transactions on Programming Languages and Systems 11 (2) (1989) 330–344.
[12] S. Das, P. Flocchini, A. Nayak, N. Santoro, Distributed exploration of an unknown graph, in: Proc. 12th Coll. on Structural Information and

Communication Complexity, SIROCCO’05, 2005, pp. 99–114.
[13] X. Deng, C.H. Papadimitriou, Exploring an unknown graph, Journal of Graph Theory 32 (3) (1999) 265–297.
[14] A. Dessmark, P. Fraigniaud, A. Pelc, Deterministic rendezvous in graphs, in: Proc. 11th European Symposium on Algorithms, ESA’03, 2003,

pp. 184–195.
[15] A. Dessmark, A. Pelc, Optimal graph exploration without good maps, Theoretical Computer Science 326 (1–3) (2004) 343–362.
[16] K. Diks, P. Fraigniaud, E. Kranakis, A. Pelc, Tree exploration with little memory, Journal of Algorithms 51 (2004) 38–63.
[17] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction, Transactions on Robotics and Automation 7 (6) (1991)

859–865.
[18] P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk, Multiple mobile agent rendezvous in a ring, in: Proc. 6th Latin American

Theoretical Informatics Symposium, LATIN’04, 2004, pp. 599–608.
[19] P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc, Collective tree exploration, in: 6th Latin American Theoretical Informatics Symp.,

LATIN’04, 2004, pp. 141–151.
[20] P. Fraigniaud, D. Ilcinkas, Digraph exploration with little memory, in: 21st Symp. on Theoretical Aspects of Computer Science, STACS’04,

2004, pp. 246–257.
[21] G.N. Frederickson, M.S. Hecht, C.E. Kim, Approximation algorithms for some routing problems, SIAM Journal on Computing 7 (1978)

178–193.
[22] R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight spanning trees, ACM Transactions on Programming

Languages and Systems 5 (1) (1983) 66–77.
[23] L. Gasieniec, A. Pelc, T. Radzik, X. Zhang, Tree exploration with logarithmic memory, in: 18th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 07, 2007.
[24] E. Korach, S. Kutten, S. Moran, A modular technique for the design of efficient distributed leader finding algorithms, ACM Transactions on

Programming Languages and Systems 12 (1) (1990) 84–101.
[25] E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk, Mobile agent rendezvous in a ring, in: Int. Conf. on Distributed Computing Systems,

ICDCS 03, 2003, pp. 592–599.
[26] S. Kutten, Stepwise construction of an efficient distributed traversing algorithm for general strongly connected directed networks or:

Traversing one way streets with no map, in: Proc. of Ninth Int. Conference on Computer Communication, ICCC, 1988, pp. 446–452.
[27] P. Panaite, A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms 33 (1999) 281–295.
[28] N. Sakamoto, Comparison of initial conditions for distributed algorithms on anonymous networks, in: Proc. of the 18th Annual ACM Symp.

on Principles of Distributed Computing, PODC ’99, 1999, pp. 173–179.
[29] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2) (1972) 146–160.
[30] M. Yamashita, T. Kameda, Computing on anonymous networks: Part I— Characterizing the solvable cases, IEEE Transactions on Parallel

and Distributed Systems 7 (1) (1996) 69–89.
[31] X. Yu, M. Yung, Agent rendezvous: A dynamic symmetry-breaking problem, in: Int. Coll. on Automata Languages and Programming,

ICALP’96, 1996, pp. 610–621.

	Map construction of unknown graphs by multiple agents
	Introduction
	Our results
	Related work

	Model and problems
	The model
	Problems and constraints

	Distributed traversal
	Merging the maps: Spanning tree construction
	Analysis of the algorithm
	Reducing the number of phases
	Conclusions
	References

