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ABSTRACT: We consider a well known distributed coloring game played on a simple connected
graph: initially, each vertex is colored black or white; at each round, each vertex simultaneously
recolors itself by the color of the simple (strong) majority of its neighbours. A set of vertices�

is said to be a dynamo, if starting the game with only the vertices of
�

colored black, the
computation eventually reaches an all-black configuration.

The importance of this game follows from the fact that it models the spread of faults in
point-to-point systems with majority-based voting; in particular, dynamos correspond to those
sets of initial failures which will lead the entire system to fail. Investigations on dynamos have
been extensive but restricted to establishing tight bounds on the size (i.e. how small a dynamic
monopoly might be).

In this paper we start to study dynamos systematically with respect to both the size and the
time (i.e. how many rounds are needed to reach all-black configuration) in various models and
topologies.

We derive tight tradeoffs between the size and the time for a number of regular graphs,
including rings, complete � -ary trees, tori, wrapped butterflies, cube connected cycles and hy-
percubes. In addition, we determine optimal size bounds of irreversible dynamos for butterflies
and shuffle–exchange using simple majority and for DeBruijn using strong majority rules. Fi-
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nally, we make some observations concerning irreversible versus reversible monotone models
and slow complete computations from minimal dynamos.

Keywords: Distributed Computing, Majority Rule, Fault Tolerance

1 Introduction

In distributed computing on point-to-point networks, faulty processors can cause the
incorrect behaviour of their neighbours. To restrict their influence and to limit the
overall damage caused by faulty processors, the idea of majority–based voting schemes
is frequently employed. Voting schemes have been used as a decision tool in a num-
ber of consensus and agreement protocols, inconsistency resolution protocols in dis-
tributed database management systems, data consistency protocols in quorum sys-
tems, mutual exclusion algorithms, key distribution in security, reconfiguration under
catastrophic faults in system level analysis and computational models in discrete–time
dynamical systems. However, in point-to-point systems, majority-based voting can be
impotent to stop the propagation of a faulty behaviour started by (sometimes few but)
well placed faulty elements. The dynamics, with respect to faults, of a system employ-
ing majority-based voting is best described as a synchronous vertex-coloring game on
graphs.

Let
�

be the simple connected graph modelling the topology of the system. Con-
sider the following game played on

�
using the set of colors �������	��
������������� . The

game proceeds in synchronous rounds. Initially, vertices are colored black (faulty) or
white (non-faulty). At each round, each vertex simultaneously considers the current
colors of its neighbours, and takes as its new color the one held by the majority of its
neighbours. We distinguish between simple and strong majority, to describe whether
or not a white vertex can be colored black in case of equal number of white and black
neighbours, respectively. We also distinguish between irreversible and reversible rules
to describe whether the initial faults are permanent or can be mended by the majority
rule.

Certain variants of the game were studied in the literature, mainly in the context of
discrete–time dynamical systems. The typical problems being studied in this setting
involved periodic behaviour of the computation.

In this paper we concentrate on the cases in which the computation converges into
the all–black monochromatic configuration; this corresponds to the situation when the
entire system will have a faulty behaviour. A set of vertices � is said to be a dynamic
monopoly, shortly dynamo, if starting the game with only the vertices of � colored
black, the computation eventually reaches an all-black configuration. Several models
of dynamic monopolies have been considered, depending on the majority rule (simple
or strong), and on the type of initial faults (reversible or irreversible). Given a dynamo
� , let ��� denote the set of black-colored vertices after round � (with ��� �!� ). A
dynamo � is said to be monotone if �"�$#%�&�('*) for every �,+.- . It is easy to see that
irreversible dynamos are always monotone; in reversible models, the investigation has
concentrated only on monotone dynamos.
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By the size of a dynamo we mean the number of its black vertices; by the time of a
dynamo we mean the number of rounds needed to reach the all-black configuration.

The size of dynamo is clearly a crucial parameter: a “larger” size implies a less
likely occurrence; thus, a system in which the smallest dynamo is large has a high
degree of fault-tolerance.

Not surprising, the existing literature has concentrated on the minimum size pos-
sible for monopolies. The combinatorial question of bounding the size of monopo-
lies was firstly studied in the static case, where a static monopoly, shortly stamo, is
defined as a set that reaches the final monochromatic configuration in at most one
round. Bounding the size of such monopolies, in a variety of models, was the topic
of [2, 8, 9, 10]. The investigation has been then extended to the analysis of the size
of monotone dynamic monopolies; in this case, all the research has concentrated on
monotone dynamos. In this context, there is the study of monopolies which reach
the all black configuration in at most two steps [8]. All the other investigations on
dynamic monopolies (see references [3, 4, 5, 7, 10]) has focused on determining tight
bounds on the size of dynamos, irrespective of their time.

However, the size is not the only aspect of the quality of dynamos. In particular,
the time needed for a dynamo to converge into the monochromatic configuration is a
very important characteristic, not only from a combinatorial but also from a practical
point of view. For example, if a catastrophic set of faults (i.e., a dynamo) has a “slow”
evolution, its presence might be more easily detected (and external action be taken);
on the other hand, a “fast” dynamo is inherently more dangerous for the system.

These two measures, size and time, are clearly related; the nature of their relation-
ship is one of trade-off.

In this paper we start the analysis of the time–size tradeoff for monotone dynamos.
In particular, we study the combinatorial problem of determining the size of dynamic
monopolies of � –time bounded computations for given � . In this light, the previous
investigations provided results on the size of

�
-, � - and � -time dynamos.

We try to give answers to the following questions (for specific topologies and vari-
ous models of dynamic monopolies):

� what is the minimal size of a stamo (1-time dynamo) ?

� what is the minimal time among the minimal-size � -time dynamos ?

� what is a general time–size tradeoff for dynamos ?

This paper contains not only the first systematic analysis of the relation between
size and time of dynamos, but also a large number of specific results are presented
on a variety of networks. We derive tight tradeoffs between the size and the time for
a number of specific regular topologies, including rings, complete � -ary trees, tori,
wrapped butterflies, cube connected cycles and hypercubes. In addition, we deter-
mine asymptotically optimal size bounds of irreversible dynamos for butterflies and
shuffle–exchange using simple majority and for DeBruijn using strong majority rules.
Finally, we make some observations concerning irreversible versus reversible mono-
tone models and slow complete computations from minimal dynamos.
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2 Definitions

Basic definitions are from [3, 4, 5]. We use also the following notions.
Let
� � ��� ����� be a simple connected graph and � �	� � � . Assume the vertices of

the graph
�

be colored by black or white. By a configuration on
�

we mean a partition
of
�

into the set of black and the set of white vertices. (For simplicity, a configuration
will be referred as the set of its black vertices.) By the size of a configuration we mean
the number of its black vertices.

The final (all-black) configuration of
�

is the configuration in which all vertices
of
�

are black. A catastrophic configuration is a configuration from which there is
a synchronous computation (every round of which is performed by means of simple
(or strong) majority rule applied to each vertex of

�
simultaneously) leading to the

final configuration. Such a computation is called a complete computation. By time
complexity of a complete computation we mean the number of its rounds. By � -time
computation we mean a complete computation with � rounds. A dynamo is a set of
black nodes whose corresponding configuration is catastrophic. By � –time dynamo
we mean a dynamo having complete computation with � rounds. By a simple (strong)
dynamo we mean a dynamo using simple (strong) majority rule. If not mentioned
explicitely, by a dynamo we mean a dynamo using simple majority rule. By a minimal
dynamo we mean a dynamo of minimal size. Given a dynamo � , let ��� denote the
set of black-colored vertices after round � (with �"��� � ). A dynamo � is monotone
if �&� # �&�('*) for every � + - . It is easy to see that irreversible dynamos are always
monotone. In reversible models, we concentrate only on monotone dynamos.

An immune subgraph of
�

is a subgraph for which there does not exist a com-
plete computation on

�
, starting from some initial configuration having all vertices

of immune subgraph white. By � -immune subgraph we mean an immune subgraph
such that there does not exist a � -time computation on

�
, starting from some initial

configuration having all vertices of � -immune subgraph white.

3 Results on Time versus Size

3.1 Lower bounds on the size of dynamos in bounded degree graphs

In this subsection we present certain useful lower bound results on the size of dy-
namos, in terms of vertex set cardinality � , vertex degree � and time bound � . Some
of these results are applied to special topologies in the following subsections.

We use the following proposition, due to [11], applicable to arbitrary graphs:

THEOREM 3.1
In each configuration 
 of a complete computation on

�
using strong majority rule,

the number of white vertices in 
 is upper bounded by the number of edges joining
vertices of different colors in 
 .

PROOF. Consider a complete computation 
 ��
 � ��
 ) ���� ��
 � . As a basis of back-
wards induction note that the configuration 
 � consists of all black vertices. That
means that initially the proposition of the theorem holds. Suppose the statement holds
for 
�� . Let ��� be the set of vertices colored black in the � -th step. The white vertices
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in 
�� � ) are those from 
 � plus the vertices from � � . In 
�� � ) , each vertex from � �
has strict majority of black neighbours, hence the number of edges joining vertices of
different colors has decreased from 
 � � ) to 
 � by at least � � ��� .
THEOREM 3.2
Let

� � � � � ��� be a graph of maximum degree � , where � � � � � . The size of a
minimal strong irreversible dynamo of

�
is at least

���� '*)�� .
PROOF. Let � be a minimal strong irreversible configuration of a complete compu-
tation on

�
. As the previous theorem holds also for initial configuration � we have

� ��� � �
	 ��� � � �

and so
� � �

�� � 	 � � �

COROLLARY 3.3
Let
� � � � � ��� be an odd degree graph of maximum degree � , where � � � � � . The

size of a minimal irreversible dynamo of
�

is at least
���� ' ) � .

PROOF. The notions of strong and simple majority are identical, as all vertices of
�

have odd degree.

We now turn our attention to time bounded complete computations. We give a
lower bound on the size of irreversible dynamos on � -regular graphs having complete
computations bounded by time � ( � –time dynamos).

THEOREM 3.4
Let

� � ��� ��� � be a regular graph, where � � � � � . The size of a minimal � –time
irreversible dynamo of

�
is at least

� �� �('*)�� .
PROOF. Let

�
be a regular graph of degree � . Let � � be a minimal irreversible

dynamo for
�

, say of size � (i.e. � � � � ��� ). Take an arbitrary complete computation
� � � 
 ���� 
 )��� �  �� 
 � , where 
�� is the set of all black vertices in

�
at round � .

First, consider � � ��� . The number of edges outgoing from the dynamo 
 � does
not increase at round

�
, i.e. the number of edges outgoing from 
 ) is not greater than

that leaving 
,� . We now estimate the maximal number of vertices that can be colored
black at round

�
. For each vertex � colored black at the

�
-st round, the number of its

edges leading into 
,� is at least � . So there are at most ��� vertices colored black at the
first round of the above complete computation. This argument holds for each round of
the complete computation. At the � -th round of the complete computation, the whole
graph

�
is colored black. Hence, it holds �� ��� �,+ � , and so � + ���� �('*)�� .

The case � � ���� �
is handled similarly.

The next lower bound is suitable for near-regular graphs.
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COROLLARY 3.5
Let

�
be the ratio of the maximum to the minimum vertex degree in

�
. Then the size

of a minimal � –time simple irreversible dynamo of
�

is at least
� ���� �(' ) � .

For regular odd–degree graphs, a slightly better lower bound for irreversible stamo
can be obtained.

THEOREM 3.6
Let

� � ��� � ��� be a regular graph of degree � �  �
, where � � � � � . Then the size

of a minimal irreversible static monopoly is at least
� � '*)� � ' � � ��� .

PROOF. Let � denote the size (i.e. the number of black vertices) of a
�
-time irre-

versible dynamo. For each white vertex, there must be at least �  �
adjacent black

vertices. One black vertex can be adjacent to at most � �� �
white vertices. Thus we

have
� � � � � � �� � ��� � � �  � � 	 � and the result follows.

We now consider monotone reversible dynamos on planar graphs. In [6] it was
proven that every

�
-time reversible dynamo in an � -vertex planar graph has the size	 � � � . We extend this result as follows:

THEOREM 3.7
Every � -time simple reversible monotone dynamo in a � -vertex planar graph has the
size at least

� � �
 �('*)  � .

PROOF. Consider a fixed � -vertex dynamo � . We shall bound the number of vertices
of a graph

�
,
��� � , on which a � –time complete computation of � exists. Let

� � denote the edges with endpoints of different colors after � � �
rounds. Clearly

� � � � 	 � � � � ) � for each � , �� � 	 � . Let
� � denote the vertices colored in the � -th

round. Because � � � � 	 � � � � we get � � � �� � ��� ) � � � � 	 � ���� ��) � . Let �	����� � � �
be the degree of the vertex � in the subgraph of

�
induced by � . It holds � � ) � 	����� � �	����� � � � and because

�
(and hence � ) is planar, it holds ����� � �	����� � � � 	� � � � � which gives the result.

For rings � � a trivial upper bound on the size of
�
–time reversible dynamo is

�
)��  .

However, this bound can be improved down to
� '*) �! for special constructed planar

graphs. This means that for
�
–time simple reversible monotone dynamos the lower

bound given in the previous theorem is close to the above upper bound. The construc-
tion is as follows. Take an arbitrary triangulation with � � � vertices and � � � edges. To
each vertex � add �	��� � � � additional neighbours of degree

�
. The basis graph creates a�

-time dynamo. The number of added vertices is � �	��� � � � � � � � � � � � � � � � � , so
altogether there are � �#" � � � � � � vertices and the dynamo has size � � � .

Note that for the irreversible model, for every $ 	 � there are planar graphs
with diameter $ and � vertices having an irreversible dynamo of size

� $%� � � �  � � � .
Consider a path of length $ � �

and add � � $  �
additional vertices to one of the

endpoints of the path. The obtained graph has � vertices, diameter $ and the dynamo
is of size

� $%� � � �  � � � .
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THEOREM 3.8
Every � –time reversible monotone dynamo in an � -vertex � -regular planar graph has
the size at least

�
)�' � � � � .

PROOF. From the proof of Theorem 3.7 it follows that � 	 � !��� � ) � . Since
�	����� � � � + � � � , we have that � � ) � 	 � � � � .

3.2 Complete trees

By � ��� � denote the complete � -ary tree of height � . Let � � �����
	 � )� � ) be the number of
vertices. There is a unique characterization of minimal irreversible dynamos in � ��� �
provided by the following “folk” theorem:

THEOREM 3.9
The configuration 
 in � ��� � forms a minimal irreversible dynamo if and only if 

consists of exactly all parents of leaves in � ��� � .

PROOF. Let 
 be a set of all vertices, being parents of leaves in � ��� � . Clearly, 

forms an irreversible dynamo. We need to show that 
 is a minimal dynamo and that
it is unique. To show the first property, take � leaves with corresponding parent as
an induced

�
�  � � -vertex subgraph. Each of these subgraphs is immune. Thus any

dynamo requires at least one initially black vertex in it. The uniqueness follows from
the fact that each of these immune subgraphs requires

�
black vertex only if it is the

parent of the leaves.

COROLLARY 3.10
The size of a minimal simple irreversible dynamo in the complete � -ary tree � ��� � is��� � � )�(' )��� . The time to reach the all-black configuration from a minimal irreversible
dynamo is � � �

.

PROOF. The size of a minimal dynamo follows from Theorem 3.9. Clearly, the dy-
namo converges in time � � �

. On the other hand, from the same “immune subgraph
argument” used in the proof of Theorem 3.9, the time � � �

is also necessary to reach
the final configuration from a minimal dynamo in � ��� � .

THEOREM 3.11
The size of a minimal � –time simple irreversible dynamo in complete tree � ��� � is�������� ���
	 � ) �

� � )��� ����	�� � �����	 ��� .
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PROOF.
Let us call level � ( - 	 � 	 � ) the set
of vertices in � ��� � with distance � from
the root.
Let us call strip � ( -  �  �

�(' ) ) the
union of �  �

consecutive levels start-
ing from level � � � �  � ��� . Strip

� �
�(' )��

is the union of � � � �� � ��� � �
�('*) � � ���

levels starting from level - and is called
the last strip. The last strip is a com-
plete � -ary tree and we denote its height
��� .

strip 1

strip 2

last strip

Fig. 1

Strips are pairwise disjoint and every strip consists of a set of disjoint complete
� -ary trees.

Upper bound: Consider a configuration where in each strip the black vertices are
leaves of all trees in that strip. In all strips but the last strip the ratio of initially

black vertices is
��� � � � )�� ���
	 � ) . The last strip contains

���
	���	 � )� � ) vertices, � � 	 of which are

black. So the number of black vertices is � � �
�
� � ���
	��
	 � )� � ) � ��� � � � ) � ���
	 � )  � � 	 �

�������� ���
	 � ) �
� � )� � ����	�� � �����	 � � .

Lower bound: Let us call the dynamo from above � . We prove that � is minimal.
Consider a minimal dynamo � � �  . We shall transform � � �� to � without adding
black vertices. We use induction on the number of strips. As � � �  is a dynamo every

�� �
vertex subgraph consisting of a leaf of a tree in strip

�
together with its � sons

contains at least one black vertex. We can move all black vertices in these subgraphs
to the leaves of trees in strip

�
. Without affecting the time of the dynamo, we can

move all black non-leaf vertices in strip
�

upwards to the leaves of trees in strip � .
Thus we have a dynamo � � )  which is from strip 1 below identical with � .

Now suppose we have a dynamo � � �  which is from strip � below identical with
� . Consider trees of height � rooted in the last level of strip �� �

. These are � -immune
and disjoint, so every one of them contains at least one vertex of � � �  . Because strip
� in � � �  is identical with strip � in � , it follows that in � � �  all vertices on the last
level of strip �  �

are black. Hence, without affecting the computation time we can
move all non-leaf vertices from strip �  �

upwards. The result follows.

COROLLARY 3.12
The size of a minimal simple irreversible stamo in complete � -ary tree � ��� � is

� � � )� '*)�� .

PROOF. From the previous theorem, for � even we get the size of 1-time dynamo to
be
� � )� ' ) . For � odd we get

� � )� '*)  � � )� '*) . As the size is integral, the result follows.
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3.3 Rings

For � –vertex rings � � we also know exact characterization of minimal irreversible
dynamos. We now give exact time–size tradeoff for irreversible model with simple
majority rule.

THEOREM 3.13
The size of a minimal � –time simple irreversible dynamo in � � is

� �� �('*) � . The time

to reach all-black configuration from a minimal irreversible dynamo is
� � � )� � .

PROOF. The lower bound on the size follows from Theorem 3.4. The lower bound on
the time follows from Theorem 3.4 and the fact that the size of minimal irreversible
dynamo is

�
.

3.4 Tori

An ��� � tori ��� � � consists of � � � vertices, where each vertex � � � � with - 	 ��	� � � � - 	�� 	 � � �
is connected to the four vertices � � � � )  �
	 � � � � , � � � '*)  �
	 � � � � ,� � � � � � )  �
	 ��� , � � � � � ' )� �
	 ��� 

The first part of the following result is from [4].

THEOREM 3.14
The size of a minimal simple irreversible dynamo in � -dimensional tori � � � � is

� � � � � � ��� � � � �
. The time of a complete computation from a minimal dynamo in tori � � � �

is at least )� � � � � � ��� '  � � ��� � ) � ��� 
The second part of the previous result can be obtained by combining the size for-

mula in the previous theorem with Theorem 3.4. We get
� � � � �  � � � � � � � +

� �� �('*) � .

Further, it can be shown that the previous time bound is tight. Consider the “diagonal”
dynamo. Its behaviour matches the estimates from the proof of Theorem 3.4.

THEOREM 3.15
The size of a minimal � -time simple irreversible dynamo in � -dimensional tori � � � � is� �� �(' ) � .

PROOF. For the upper bound consider a dynamo consisting of diagonals in � � � � of

distance � �  �
. The size of this dynamo is

� �� �('*) � and the time is � . Following

Theorem 3.4 the lower bound is
� �� �('*)�� .

COROLLARY 3.16
The size of a minimal simple irreversible stamo in a � -dimensional tori is

� � ��� � .
3.5 Butterfly

The butterfly graph of dimension � (denoted as ��� � � � ) consists of �  �
columns,

each column containing � � vertices, each of them labeled with unique binary string of
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the length � . An edge connects two vertices in ��� � � � if and only if they are in the
consecutive � -th and

� �  � � -st columns, respectively, and their labels are either equal
or differ only in the � -th bit.

Wrapped butterfly graph of dimension � (denoted as
� � � � � � ) is obtained from

� � � � � by making the first and the last column identical.
� ��� � � � is a regular graph

of degree � .
The following results on sizes of simple irreversible dynamos in � � and

� ��� are
from [7].

THEOREM 3.17
The size of a minimal simple irreversible dynamo in ��� � � � is at least �������

	�	� and at
most � � � � . The size of a minimal simple irreversible dynamo in

� ��� � � � is at least
�
� � ��� and at most � � � �  � � � �  � � �� .

Now we provide an improvement of the lower bound for � � in Theorem 3.17.
��� � � � can be sketched such that � � rows are numbered top–down in order - �  � � � � ��

and �  �
columns are numbered right–left in order - �  � � � .

LEMMA 3.18
Consider an arbitrary dynamo � in ��� � � � . Then � can be transformed into a dy-
namo � � of at most the same size such that black vertices are only in rows - �  � � � � � ) ��

and in columns -����  � � � �
.

PROOF. Black vertices of � in the row � and the column � are moved to the row � and
the column � � �

. Black vertices of � in the row � � � )  
 are moved to the row 
 (in
the same column � , �  � ). It is easy to verify that a new configuration is complete.

Let � � � � � � be a multigraph obtained from � � � � � by adding a loop to every vertex
in column � . We generalize the notion of a dynamo in a natural way to multigraphs
(i.e. in ��� � � � � a white vertex in column � has to have two black neighbours in order
to become black).

Consider a dynamo � in ��� � � � � � � . Clearly each irreversible computation is
monotone. Therefore to each complete computation 
 from a dynamo � can be
assigned an acyclic dependency digraph

� � � � as follows. If a vertex � in � � � � � � � �
has been colored in 
 on the basis of a black-colored neighbour � , we add a directed
edge

� � � � � .
LEMMA 3.19
To each vertex � in the column - of � � � � � � � � can be assigned a path � ��� ����� ) ��� � �
�  ����� such that

1. vertices � � ���  ��� � � ) are white, � � is black (in the dynamo � );

2. the column of � � '*) is greater than the column of � � (i.e. the path is “one-directional”)

3. paths � � ��� ) ���  ��� � and � � � � ) ���� � � � starting from different vertices �*� � in col-
umn - are edge disjoint.

PROOF. Consider a complete computation from a dynamo � in ��� � � � � � � . Denote
its dependency digraph as

�
.
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The path for a vertex � in the column - is constructed as follows. If � is black (i.e.
� � � ), there is a path of length - in � � � � � � � � . Otherwise, � was colored on the
basis of some of its neighbours, say � ) . If � ) � � , there is a path of length

�
in

� � � � � � � � (and this path is edge disjoint with an arbitrary one-directional path in
� � � � � � � � starting from a vertex in column - ). If � )��� � , it must have been colored
on the basis of two neighbours, so there are two arcs in

�
ingoing to � ) . As

�
is

acyclic and the arc
� � ) ��� � is in

�
, at least one of the ingoing arcs leads to the left and

we choose this one. Iterating this procedure a path in ��� � � � � � � can be constructed
ending with a vertex from � (if we approach the leftmost column in � � � � � � � � ,
we can use the fact that a vertex in column � � �

needs two neighbours black to be
recolored).

Now we must show that the chosen paths are edge disjoint. Assume we have con-
structed a prefix � � ��� ) �  � ��� � of some path such that it is edge disjoint to all already
constructed paths. If � � � � the path ends in � � . So let � ���� � . If � � does not be-
long to a previously constructed path, clearly the edge

� � ����� � ' ) � does not belong to a
previously constructed path either. If � � � � � for some path � � � � ) �  � � � � �  � , then this
path is unique (clearly there are at most two vertex disjoint paths going via � � and the
existence of two such paths contradicts the fact that � � � )���� � is in already constructed
disjoint section). To continue consider the two arcs going to the vertex � � in

�
. One

of them is going from � � '*) . Two outgoing arcs are going to the right to vertices � � � )
and � � � ) (again, these vertices are different from the induction hypothesis). So the
other neighbour, say � , contributing to recoloring � � is positioned left and the edge� � ��� � � does not belong to previously constructed paths, so it can be added to the path
� � ��� ) �  � ��� ����� .

THEOREM 3.20
The size of a minimal simple dynamo in � � � � � is at least � � � � .
PROOF. Following Lemma 3.18 for each dynamo in ��� � � � there exists a dynamo in
� � � � � � � � with at most the same size. Following Lemma 3.19 in every dynamo
� in ��� � � � � � � there are � � � ) one-directional edge disjoint paths ending in black
vertices (from � ). However at most two paths can end in one black vertex (all paths
ending in black vertex are approaching from right neighbours and there are just two
edges from the right neighbours).

LEMMA 3.21
The size of a minimal simple irreversible stamo in ��� � � � is at least � � '*)��� � � � and
at most

� � ' )� � � � � .

PROOF. The lower bound follows from the decomposition of ��� � � � into disjoint cy-
cles of length � . The upper bound follows from grouping �  �

columns of � � � � �
into

� � '*)� � groups of at most � consecutive columns.

Question 1: Interesting question is to determine the size of a minimal simple irre-
versible dynamo in

� � � .

In the following theorem we give a minimal � –time simple irreversible dynamo in� � � having � � � � ��� �
	�� ��� � � � .
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THEOREM 3.22
The size of a minimal � –time simple irreversible dynamo in

� ��� � � � is
� �� �('*) � .

PROOF. The lower bound follows from Theorem 3.4. The upper bound follows from
the fact that, if the column of � � vertices is black, then also its right and left column
will be colored black in the next round.

3.6 Cube Connected Cycles

The cube-connected-cycles graph of dimension � (denoted as 
 
 
 � � � ) is a regular
graph of degree � with � � � vertices. It can be obtained from an � -dimensional hy-
percube by replacing each vertex of the hypercube with a circle of length � (called a
supernode), and appropriately connecting the corresponding vertices. Each vertex in

 
 
 � � � can be uniquely labeled with a binary string of length � and an index, called
cursor’s position, in this string.

Given a string � � � - � � � � and an index � ( - 	 � 	 � � �
), let � � � denote� with the cursor in position � . The operations of shifting the cursor cyclically to

the left and to the right on � are denoted as
� � � � � � and � � � � � � , respectively. Let� � � � � ��� � � )  ���� � �  � � � ) , where �� � � � � � � denote the “shuffle” of the � -th position

of � � � � � )  � � � � ) ; for brevity, let � � � � � � denote � � � � � � � . An edge connects two
vertices � , � if and only if � can be obtained from � by means of cyclically shifting
the cursor to the left or right or by changing the bit pointed by cursor.

The following bounds on the size of an irreversible dynamo in 
 
 
 were estab-
lished in [7].

THEOREM 3.23
The size of a minimal irreversible dynamo in 
 
 
 � � � is at least � ��� � � � ' )� � �

� � � � � � � � and at most � � � � � �  � � � � 
We now introduce a modular construction for monotone irreversible dynamos; this

construction will generate a trade-off between time and size.
Informally, the construction is as follows. Assume for simplicity of presentation

that � � � ���  � � divides � , for some
�	� - .

We first divide the vertices � � - � � � � � ���� � � � � �
of each supernode � into consec-

utive groups of size � , starting with � � - . Then, the vertices of a group � � ��� � � � � � � ���  � � � ��� 
� � �
, ( - 	 � 	 � ��� � �

) are consecutively paired, starting with � � ��� .
Finally, every pair is given a type (A, B, or C) as follows: in each group, the pair� � � ��� � � � ���  ��

is assigned type A, the pair
� � � ��� �� � �

� � � � � ��� �� � �  type C, and
all others type B; hence, the pairs in each group will have the following type pattern:� ��� 
 ��� .

The typing is such that, every pair
� � � ��� � � �  ��

has the same type as the three pairs� � � � � ��� ��� � � � � � � �
 ��
,
� � � '*) � � ��� ��� � � '*) � � ��� �  ��

, and
� � � '*) � � � � � � � � ��� � � '*) � � � � � � �

� �� �� � � � � � � � ' ) � � ����� ��� � � � � � '*) � � � � � �  ��
in distinct supernodes, where � is al-

ways even; moreover, the nodes in these four pairs form a cycle of lenght 8. As a final
step, each of these cycles is “colored” according to its type.

Let us now describe the construction formally. Let ��� ���,� � � � � -�� � � ��� � � �� � '*) � - � . Given � � ��� ��� , let 
�� � � ��� ���
 � �� � � �
 ! be the cycle of vertices of
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CCC(n) defined by:

�

 � � �

�� � � � � if � � -� � �

 � � � )�� if � � � � �� � �

 � � � ) � if � � �

�

 � � '*) � � � � 
 � � �

Let 
�� � � � � 
�� � � ��� � � � ��� ����� . Clearly, all these cycles are vertex-disjoint;
moreover they cover all strings (i.e., ��� � � - � � � � ��� � � ��� � ���	� � 
�� � � ��� ). Notice
that, for any � , the cardinality of 
�� ��� is

�
�� .

Let A-Color � ��� denote the process of coloring each cycle in 
�� ��� alternating black
and white. Note that every cycle so colored will become black in one step.

Let B-Color � � � denote the process of coloring each cycle 
�� � � � �,� �
$�	�� ��� �
 ! in

�� ��� as follows: color �
 � and �
 
 black, all other white.

Let B’-Color � ��� denote the process of coloring each cycle 
�� � � ��� � �
,��� �  � �
 ! in

�� ��� as follows: color �
 � and �
 � black, all other white.

Let C-Color � ��� denote the process of coloring in each cycle of 
�� ��� one arbitrary
vertex black and all the others white.

Modular Construction: Let � ��� � �  � � divide � .
For - 	.
 	 �
 � �

A-Color
� 
�� �

B-Color
� 
��� � ��� (

� 	.� 	 �
)

B’-Color
� 
��� � � � (

�  ��	 � 	 �
�  �

)

C-Color
� 
 �� �

���  � � �

We now prove the correctness of the modular construction and evaluate the time of
the resulting dynamos.

LEMMA 3.24
Every cycle in 
�� 
�� � becomes black at time 1.
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LEMMA 3.25
Every cycle in 
�� 
��� � � � (

� 	 � 	 �
) will become black in � �  �

time steps.

PROOF. Consider an arbitrary cycle �
,� � �  � �
 ! � 
�� 
��  � ��� � � 	 � 	 �
). By

construction ( � � 
�� ��� � ), �
 � and �
 
 are both black at time 0. Observe that each of
�
 � � �
 ) � �
 � and �
  is connected to a node in 
�� 
 �� �

� � � � � � . Hence, at time �,� �
,

every cycle in 
�� 
��  ��� will be as depicted in Fig. 2; it is easy to verify that, after
an additional 3 steps, all nodes in the cycle will become black. Using this as a basis, a
simple inductive argument yields the claim.

LEMMA 3.26
Every cycle in 
�� 
��  � ��� (

�  � 	.� 	 �
�  �

) will become black in � � �
� � �� � �  �

time steps.

PROOF. Since 
 is arbitrary, Lemma 3.24 holds also for 
�� � 
  � � � � . By an argument
specular to the one of the proof of Lemma 3.25 (using 
�� � 
� � ��� � instead of 
�� 
�� �
as the black set at time t=1), the claim follows.

LEMMA 3.27
Every cycle in 
�� 
��� �

���  � � � will become black in � � �� time steps.

PROOF. Every cycle �
 � �� � � �
 ! � 
�� 
��  �
���  � � � contains one black vertex by con-

struction ( 
 � 
�� ��� � ). Moreover, each of the vertices �
,� � �
 ) � �
 � and �
  is connected
to a vertex in a cycle in 
�� 
��� �

� � ; at the same time, each of the vertices �
 � � �
 � � �
 

and �
 ! is connected to a vertex in a cycle in 
�� 
��� �

���  � � � . By Lemmas 3.25 and
3.26, these external incident vertices will become all black at time � �  �

. Hence, at
that time, the situation will be as depicted in Fig. 3. It is easy to verify that within an
additional 4 steps all vertices of the cycle will have become black.

Finally,

LEMMA 3.28
The modular construction generates a

� � � 	� � –time irreversible dynamo in 
 
 
 � � � 
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PROOF. Let
� � ��� denote the set of all vertices in the cycles in 
�� ��� . First observe that,� � ) � � � � � - � � � ���� �

�  � � , � 
 ) � 
 � � � - � � � ���� �
 � � � , the condition
� � ) ��!� � � or� 
 ) �� 
 � � implies 
�� 
�� )  � � ) ��� 
�� 
 � �  � � � ���� ; that is, all the cycles considered

by the construction are disjoint. Further observe that the union of all the vertices in all
the cycles considered by the construction includes all vertices of the 
 
 
 � � � . Hence,
from Lemmas 3.24, 3.25 and 3.26, the theorem follows.

We now calculate the size of the dynamos obtained by the modular construction.

LEMMA 3.29
The dynamo generated by the modular construction, has size � � � �� � � '  � '*) .

PROOF. A-Color() will color black 4 nodes in each cycle belonging to 
�� 
 � � ( - 	

 	 � 
 � �

) for a total of ��� �
 � � �� black vertices.
B-Color() and B’-Color() will color black 2 nodes in each cycle belonging to 
�� 
�� 

� � � ( -�	.
 	 � 
 � �
, � : � 	 � 	 �

and
�  ��	.� 	 �

�  �
) for a total of � � �
 � �

� � � ��
black vertices.

C-Color() color black 1 node in each cycle 
�� 
��� �
� �  � � � ( - 	 
 	 � 
 � �

) for

a total of � 
 � � �� black vertices.

Thus, the total number of black vertices is � � � � � '  � � � � ' �  .
Summarizing,

THEOREM 3.30
The size of a minimal � -time irreversible dynamo in 
 
 
 � � � , � �

� , is at most� � � � � � �  �
� � ��� � .

Hence, a � � � � � � �
		� � � � � �	� � bound follows for minimal � -time irreversible
dynamo in 
 
 
 � � � .
THEOREM 3.31
The size of a minimal � –time irreversible dynamo in 
 
 
 � � � , � � � , is at least � � � �
and at most

� �
�
� �  �

� � � � �  � � .
PROOF. It follows from Theorem 3.30 and the lower bound of Theorem 3.23.

The result of this theorem is somewhat surprising, when compared to the one of The-
orem 3.22 for butterfly graphs, since 
 
 
 � � � can be embedded into

� ��� � � � with
dilation � .

The modular construction above produces dynamos with time � �
� . For smaller

values of � , ad-hoc constructions can be easily found; following are some examples.

THEOREM 3.32
The size of a minimal irreversible stamo in 
 
 
 � � � is at least

� �� �  � and at most
� � � � .

PROOF. Let � � � divide � . Consider the following construction: For - 	.
 	 � 
 � �

A-Color
� 
�� � . Observe that all vertices are in a 
�� 
�� � cycle for some 
 ; furthermore,

by the property of A-Color, within one time unit all elements in the 
�� 
�� � cycles
become black. Hence the construction yields a

�
–time irreversible dynamo. The size

follows from the fact that only half of the nodes are colored black by A-Color. The
lower bound is a direct corollary of Theorem 3.6 since 
 
 
 � � � is � -regular.
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THEOREM 3.33
The size of a minimal � –time irreversible dynamo in 
 
 
 � � � is at most

� � � � .
PROOF. Let � � � divide � . Consider the following construction: For - 	.
 	 � 
 � �

A-Color
� 
�� � .

First notice that every vertex not in a 
�� 
�� � cycle has two neighbours in 
�� 
�� � , for
some 
 . By the property of A-Color, within one time unit all elements in the 
�� 
 � �
cycles become black; thus, at time t=2, all vertices are black. In other words, the
construction yields a � –time irreversible dynamo. The size follows from the fact that
the 
�� 
�� � cycles contain

� �� elements of which only half are colored black.

THEOREM 3.34
The size of a minimal � –time irreversible dynamo in 
 
 
 � � � is at most

�  �) 
 � .
PROOF. Let � � � divide � . Consider the following construction: For - 	.
 	 � 
 � �

A-Color
� 
�� � and C-Color

� 
��� � � .
By the property of A-Color, within one time unit all elements of 
�� 
 � � become

black; hence, at that time, the situations for every cycle in 
�� 
 �� � � is as depicted in
Fig. 3. It is easy to verify that within an additional 4 steps all vertices of the cycle will
have become black.

3.7 Shuffle–Exchange

Let � � � � � )  � � ) ��� be a binary string. The left cyclic shift and the right cyclic shift
operations on � are denoted as

� � � � and � � � � , respectively, and the shuffle operation� � � � is defined as � � � �$� � � � ) � �� ) �� � , where �� � � � � � � .
The shuffle exchange graph of dimension � (denoted as � � � � � ) is a graph

��� ����� ,
where

� �!� � ��� � � - � � � � � and � �!� � �*� � � � � � � � � � � � � � � � � � � � � � � � �� � .
Due to Theorem 3.2 the lower estimation on the size of a minimal irreversible dy-

namo in � � � � � is � � � � . This is close to the following upper bound.

THEOREM 3.35
There exists an irreversible dynamo in � � � � � of size

� � �� � .

PROOF. In the following we will use interchangibly the binary and decimal representa-
tions of vertices. Consider a configuration where only the vertices

�
� � � � � ,..., � � � '*) ��� �

are initially black. Now consider vertices �  �
� � ��� � . We prove that each such

a vertex � has two bigger (in decimal representation) neighbours both smaller than
� � '*) � � . We distinguish two cases. Let � be odd, i.e. the binary string is of the form
- � �

. The
�

-operation leads to � � - , i.e. � � and the � -operation leads to
� - � , i.e.

� � � )  � � � � ��� � . Let � be even, i.e. of the form - � - . Then again the
�

-operation
leads to � � and the � -operation leads to �  �

. Following these facts it is clear that it is
possible to color vertices -����  � � � � ��� � � �

in decreasing order. The case for remaining
vertices is symmetric.

Clearly, the previous dynamo converges in time
�

� � ��� � .
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LEMMA 3.36
The size of a minimal simple irreversible stamo in � � � � � is at least

� �� �  � and at most� � � � .
PROOF. For the upper bound, decompose the graph into disjoint cycles. In each cycle
color every second vertex. The lower bound follows from Theorem 3.6.

THEOREM 3.37
There exists an irreversible dynamo in � � � � � of size

�
�� � �  � � � � � converging in time� .

PROOF. We color three sets of vertices. The first set is formed by the vertices having
equal number of - ’s and

�
’s in their bit-string representations. In the second set there

are vertices with less number of
�
’s of the form � �

and in the third set there are
vertices with less number of - ’s of the form � - . W.l.o.g. consider the vertices with
less number of

�
’s. Every basic cycle (formed by operation ������� � ) contains at least

one vertex ending with
�

(and thus colored black). As every white vertex in the cycle
has one black neighbour outside the cycle, at least in time � the whole cycle is colored
black.

Using
��� � �
� � ������ � � ��	� � 
 �� � � and

� � ��	��� � �
�� 
 � we obtain the result.

3.8 DeBruijn

The DeBruijn graph of dimension � (denoted by $ � � � � ) is the graph whose vertices
are labeled by all binary strings of length � and whose edges connect each string � � ,
where � is a binary string of length � � �

and � is in � -�� � � , with the strings � � , where
� is a symbol in � - � � � .
Question 2: Basic question is to determine the size of a minimal simple irreversible
dynamo in $ � .

LEMMA 3.38
The size of a minimal simple irreversible stamo in $ � � � � is at least

� � � � and at most� � � � .
Due to Theorem 3.4, the size of a minimal � –time simple irreversible dynamo in$ � � � � is at least

� �� �('*) � .
THEOREM 3.39
There is a � –time simple irreversible dynamo in $ � � � � of size

� � '*)� � � �  )� � � ) � � .

PROOF. Consider a subgraph induced by vertices
� ���  ��� � �

� �
. As every vertex �

is connected with vertices � � , � �  �
, � � � � � , this subgraph forms a binary tree. We

have a similar situation for the subgraph induced by � � � ���  ��� � �
(opposite tree).

According to Theorem 3.11 there exists a dynamo of size
� � � '*)� � �  )� � � ) � in each

of these trees converging in time � � �
. Consider a configuration given by joining these

two dynamos. As every inner vertex from a tree has three neighbours in that tree, all
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vertices except the leaves can be colored in � � �
rounds. As every leaf has at least one

neighbour in the opposite tree which is not a leaf, one additional round is sufficient to
color all leaves.

THEOREM 3.40
There exists an irreversible dynamo in $ � � � � of size � � � � converging in time at most

� �  �
.

PROOF. Consider the decimal values of the labels. Let dynamo consists of vertices
� � � � �  � � � � � ) . Every vertex � from

� ���  � � � � � � �
is connected with vertices � � and

� �  �
. Thus in time � all vertices smaller than � � � ) are black. Every vertex from

� � � ) �  � � � � � )  � � � � has two neighbours smaller than � � � ) . So by the time �  �
all

vertices smaller than � � � )  � � � � are black. In the next � rounds the rest is colored
in a symmetric way.

Question 3: There is an asymptotical gap between the upper and lower bounds known
for � –time simple irreversible dynamo in $ � and tightening this gap remains an open
problem.

Next, we determine the size of irreversible dynamo in DeBruijn with strong majority
rule.

THEOREM 3.41
The size of a minimal strong irreversible dynamo in $ � � � � , � � � , is at least

� �
� ��

and at most � � � � .
PROOF. Upper bound: Consider the tree induced by vertices

� ���  ��� � �
� �

. Color
� � � � vertices from this tree in such a way that every white vertex from the tree has
three black vertices from the tree (i.e. every second level). In a single round the tree
is recolored black. The remaining vertices form another tree which is then recolored
level by level.

Lower bound: comes from Theorem 3.2.

THEOREM 3.42
There exists a � –time strong irreversible dynamo in $ � � � � of size � � � �  � � � � � � 	 � )� �

�
	 � � � � )  � .

PROOF. Consider the dynamo as in the upper bound of the previous theorem. Color
black also every � -th level from the tree induced by � � � ���� � � . Single round is needed
to recolor the lower tree. And additional � � �

rounds are sufficient to recolor the higher
tree. In the higher tree we have � ��� � � )��� strips and the number of black vertices is���� � � � � � � � � '*)� .
3.9 Hypercubes

An � -dimensional hypercube is an undirected graph 	 � consisting of � � � � vertices
and )� � � edges. Vertices are labeled by binary strings of length � . There is an edge
between two vertices if and only if their labels differ in exactly one bit. 	 � is regular
of degree � and has diameter � .
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The following result about the lower bound on the size of irreversible dynamo in
	 � is from [11].

THEOREM 3.43
The size of a minimal irreversible dynamo in 	 � is at least

� � �� '*)�� .
THEOREM 3.44
There exists an irreversible dynamo in 	�� of size

� � � � ��� � � and time � � � .

PROOF. The argument for hypercubes of even dimensions is as follows: take the nat-
ural labeling of vertices in � -dimensional hypercube (i.e. by binary strings of length� , where strings of neighbours differ in exactly one bit). Consider the “diagonal” dy-
namo consisting of vertices having equal number of 0’s and 1’s in their labels. The
adjacent vertex to this dynamo has one bit changed, i.e. it has more black neigh-
bours as white ones. So all neighbours became black in one round. This process
can be continued during next � � �

� �
rounds. The size of such dynamo is at most� �� � � � � ���� � � � � ��  � � � � ��� � � � � .

The bound for hypercubes of odd dimensions comes from considering the “two–
diagonals” dynamo consisting of vertices having in their labels the number of - ’s
greater by one as the number of

�
’s and vice versa.

The above theorem has been independently observed also by S. Dobrev and F.
Geurts.

Question 4: There is still an asymptotical difference between the upper and lower
bounds on the size of minimal dynamos in hypercubes. The open problem is to tighten
this difference.

THEOREM 3.45
The size of a minimal � –time irreversible dynamo in the � -dimensional hypercube 	 �
is at least

� �� �('*) � and at most
� �
�(' ) � � � �

� 
 � � � � for � � � � � � � .

PROOF. The upper bound follows from
��� � ) � ���' � � � �  � � � � for 
"+ �

and 
�.� 
� � � .

COROLLARY 3.46
The size of a minimal irreversible stamo in 	 � is at least

� � � � � and at most � � �
�

�
� � � .

4 Irreversible Model versus Reversible Monotone Model

Recall that by the reversible monotone dynamo we mean a set of vertices � such that:

� in round - vertices from � are black and other vertices are white;� in round � � - a vertex � is black if and only if it had at least
�

�	��� � � ��� � � black
neighbours in round � � �

;� a black vertex never becomes white;



20 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

� in some round � � all vertices are black.

A subgraph
�

,
��� �

, is called a black (or simple) immune subgraph if every
vertex � � � has at least

�
�	��� � � ��� � � neighbours in

�
.

LEMMA 4.1
A set of vertices � is a (reversible) monotone dynamo if and only if � is irreversible
dynamo and is black immune.

On some regular topologies we get asymptotically tight bounds on the size of min-
imal monotone dynamos:

LEMMA 4.2
For every irreversible dynamo � in an � -dimensional wrapped butterfly, CCC, De-
Bruijn there exists a reversible monotone dynamo � � , � � � � , with at most � � � � ,� � � � , � � � � vertices, respectively.

PROOF. In butterfly and 
 
 
 , the cycles of length 4 and 8, respectively, are black
immune. In DeBruijn, consider cycles ��� � � �� � � ���� � � ��� � ��� � for
-  � - ����� � �� �  � �

(if ��� �&��� � � the cycle has length 3) and cycles � �  � � �
� � � �� � � � � �� � � � �	� � �  � � � � �  � otherwise.

LEMMA 4.3
The size of a minimal monotone dynamo on a binary complete tree � � � � is at most
��� �

� � �
.

LEMMA 4.4
There exists a monotone dynamo on 	�� of size

� � � � ��� � � .
Question 5: The question is whether in hypercubes the size of a minimal monotone
� –time dynamo is asymptotically the same as the size of minimal irreversible � –time
dynamo.

As indicated in [4], the size of a minimal irreversible dynamo in � -dimensional
tori is smaller by a factor two than the size of a minimal reversible monotne dynamo.
This raised the intriguing question of whether it is always possible to transform an
irreversible dynamo into a monotone one, increasing the number of initially black
vertices by at most constant times. We answer this hypothesis in a negative way:

THEOREM 4.5
There is a planar graph

� � ��� ��� � with � � � � � such that the size of a minimal
simple irreversible dynamo on

�
is

�
, but the size of any minimal simple reversible

monotone dynamo on
�

is at least � � � � .
PROOF. Consider the following graph

� � � � � ��� , � � ��- ���� � �&� , �!� � � � � - � ���
� � � ���  � � � - 	.� 	 � � � ��� � � - � � � � � � 	 � 	 � � � � �  Irreversible dynamo is � - � .
Reversible monotone dynamo is � - � � ��� � � � ��� �  � ���,� � �  � � � � 
 � �  Clearly, each
reversible monotone dynamo on

�
is of size at least � � � � .

The question remains open for regular graphs.
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Question 6: The question is whether the ratio between the size of reversible monotone
and irreversible dynamo is

	 � � � also for regular graphs.
Note that the above hypothesis remains false even if � � 		� is replaced by � �
		� �� � � � . Take an � -vertex star graph (i.e. a center vertex with � � �

neighbours of
degree

�
); the expression � �
		� � � � � � is

�
for irreversible model and � � �

for
reversible monotone model.

5 Graphs having Slow Complete Computations from Minimal
Dynamos

Another interesting topic is to search for graphs in which each complete computation
starting from a minimal irreversible dynamo is in certain sense slow.

We are aware of a graph having the property of “slow computation” from an arbi-
trary minimal irreversible dynamo (i.e. a complete computation which is asymptoti-
cally slower than the diameter of the graph). In Torus Serpentinus [4] of size ��� �
(with � - the length of serpentines being asymptotically lower than � - the number of
serpentines), each minimal dynamo of size � converges in time at least � � � , while the
dynamo of size � �� converges in time � . The diameter of a � � � Torus Serpentinus
is �  � .

Another interesting example is the butterfly ��� � � � . There are minimal dynamos
(of size � � � � ) with complete computations of time � � � � ����� � � � � (see [7]), but there
also exists a dynamo of the same size � � � � with a complete computation of time�� � � � � ����� � � � � � � . This dynamo consists of nodes in column � � � (note that
the columns are numbered - ���� � � from right to left) and rows � -�� � ���  � � � � � � � �
and � � � � �  � � � � � �  � ���� � � � � ) � � � . For the computation to proceed to the col-
umn � � �

, both subbuterflies in columns - ���� � � � � and rows -����  � � � � � � �
and

� � � � �  � � � � � ) � �
must be colored. This is done in �

� � � � � steps (as in the previ-
ous dynamo). Additional �  � steps are needed to color the rest of the graph. Thus
the dynamo works in � � � � � �� � � � � ����� � � � � � � steps. The time of a complete
computation depends in this case on the structure of dynamos.

Question 7: The main open problem is whether for some specific topologies (e.g.
hypercubes) �

�
� � � � ����� � � � ��� -time irreversible dynamos are asymptoticaly smaller

than
� � ����� � � ��� � � � � � -time irreversible dynamos.

In other words the question is whether in these topologies there are “small” dy-
namos with “slow” complete computations or there always exists a “minimal” and
“fast” dynamo.

6 Conclusions

We have initiated the study of dynamos with respect to both the time and the size. We
derived tight time–size tradeoffs for rings, tori, wrapped butterflies, cube connected
cycles and hypercubes, and asymptotically optimal size bounds for simple (strong)
irreversible dynamos in butterflies and shuffle–exchange (DeBruijn).

In future research we are concentrating on the following topics:
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� Unsolved questions
– Determine the size of minimal irreversible dynamos for wrapped butterflies, De-

Bruijn and hypercubes.
– Determine the size of minimal � -time irreversible dynamos for DeBruijn.

� Upper bounds related to subsection 3.1 (for more general classes of graphs).
� Characterizations of graphs for which the time of a complete computation from a

minimal irreversible dynamo is bounded by the diameter of the graph.
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