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The study of computing in presence of faulty robots in the Look-Compute-Move model has 
been the object of extensive investigation, typically to design fault-tolerant algorithms.
In this paper, we initiate a new line of investigation on the presence of faults, focusing 
on a different issue: we study, for the first time, the unintended dynamics of the robots 
when they execute an algorithm designed for a fault-free environment, in presence of 
undetectable crashed robots.
We start this investigation considering a classical point-convergence algorithm for oblivious 
robots with limited visibility in a simple setting (which already presents serious challenges): 
synchronous robots on a line with at most two faults. Interestingly, the presence of faults 
induces the robots to perform some form of scattering, rather than point-convergence. In 
fact, we discover that they arrange themselves inside the segment delimited by the two 
faults in complex interleaved sequences of equidistant robots.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Consider a group of autonomous mobile computational entities, called robots that operate in a continuous space initially 
occupying arbitrary positions. The robots are represented as points, and they are provided with local coordinate systems (not 
necessarily consistent with each other) centered in themselves, and with sensor capabilities that allow them to perceive the 
positions of the other robots in their range of visibility. They operate in cycles of Look-Compute-Move activities: when 
active, a robot observes the positions of the other robots (Look), it computes a destination point (Compute), and it moves 
towards it (Move) [21]. Robots are oblivious, which means that once a cycle is completed, a robot starts the next cycle 
without any recollection of previous observations and computations, and the destination point is calculated solely on the 
basis of the current observations. Robots have no means of explicit communication (i.e., they are silent) and they interact 
only by observing each other’s positions.

Robots operate synchronously (Fsync), if they perform their Look-Compute-Move activities in synchronized rounds; semi-
synchronously (Ssync), if only subsets of robots are activated in synchronized rounds; or asynchronously (Async), if the 
activation times and the durations of each activity are totally independent.

These systems of autonomous oblivious robots have been extensively investigated under different assumptions on the 
various model parameters (different levels of synchrony, level of agreement on the coordinate system, visibility conditions, 
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etc.). In these studies, the environment where they operate can be 1-dimensional (e.g., [11–13,20,26]), 2-dimensional (e.g., 
[9,23,25,27,29]) or, as in recent studies, 3-dimensional (e.g., [30,31]). For an overview of the recent research on the subject 
refer to [22] and chapters therein.

One of the most common problems studied in the Look-Compute-Move model is pattern formation, where the robots 
are initially positioned in arbitrary points and need to form a given configuration (e.g., see [23,27–29]). Particular cases of 
pattern formation are gathering, where the robots must move to occupy the same point (point-formation) or they have to 
converge towards the same point (point-convergence) (e.g., see [2,9,10,25]) and circle formation, where the robots must move 
to occupy equidistant points on a circle (e.g., see [17,19]). Another typical problem for mobile robots is scattering, where 
robots need to move away from each other to cover the space, typically in some regular way (e.g., see [7,8,11,18,20,24]).

Gathering, in particular, has been the object of investigation of several studies from different perspectives (computer 
science, control theory, artificial intelligence, biology, physics ...), and under a variety of models (continuous/discrete time, 
continuous/discrete sensing and movements, etc.); for a recent survey see [4].

Most algorithms in the literature are designed for fault-free groups of robots. There are several studies that consider the 
presence of faults, typically in the context of the gathering problem. In these studies robots might stop to operate (crash 
faults) or they may behave differently than intended (Byzantine faults). The goal has been to design fault-tolerant algorithms 
focusing on the maximum amount of faults that can be tolerated for a solution to exist in a given model (e.g., see [1,3,5,6,
8,16]). For a detailed account of the current investigations see [15].

In this paper, we consider a rather different question in presence of faulty robots that has never been asked before. 
Given an algorithm designed to achieve a certain global goal by a group of fault-free robots, what is the behaviour of the 
robots in presence of crash faults? Clearly, in most cases, the original goal is not achieved, but the theoretical interest is 
in characterizing the dynamics of the non-faulty robots induced by the presence of the faulty ones, from arbitrary initial 
configurations. Note that understanding the non-intended behaviour of a system in presence of faults might be useful also 
to detect the presence of faults and possibly their location; so, this study might also shed some light on fault detection in 
system of oblivious robots.

We start this new line of investigation focusing on the classic point-convergence algorithm by Ando et al. [2] for robots 
with limited visibility, and considering one of the simplest possible settings, which already proves to be challenging: fully 
synchronous robots (FSynch) moving in a 1-dimensional space (a line), in presence of at most two faults. In a line, the 
convergence algorithm prescribes each robot to move to the middle point between the two farthest visible robots on the 
two sides (if robots are visible on one side only, the destination is the middle between the current position and the one 
of the farthest visible robot). In absence of faults, starting from a configuration where the robots’ “visibility graph” is 
connected, the robots are guaranteed to converge toward a point. It is not difficult to see that with a single fault in the 
system, the robots successfully converge toward the faulty robot. The presence of multiple faults, however, gives rise to 
intricate dynamics, and the analysis of the robots behaviour is already quite complex with just two faults.

Interestingly, and perhaps surprisingly, the presence of faults induces the robots to perform some form of scattering, 
rather than gathering. In fact, we discover that they converge to a hierarchical structure of interleaved sequences composed 
of equidistant robots, inside the segment delimited by the two faults.

Also interesting to note is the rather different dynamics that arises when moving to the middle between two robots, 
depending on the choice of the robots: when considering the closest neighbours (like in [18]), the result is an equidistant 
distribution, when instead selecting the farthest robots on the two sides the result is a much more complex structure of 
sequences of robots, each converging to an equidistant distribution. The main difficulty of our analysis is to show that 
the robots indeed form this special combination of sequences: the convergence of each sequence is then derived from a 
generalization of the result by [18].

The paper is organized as follows: in Section 2 we introduce the notation and the point-formation problem studied 
in this paper. In Section 3 we describe the scattering algorithm by Cohen and Peleg [11], and we slightly generalize the 
result for Fsync robots obtaining a theorem that will be needed in the rest of the paper. In Section 4 we analyze the 
robots’ dynamics in presence of two faults: we first show that they eventually stabilize in a configuration delimited by the 
two faulty robots, where each robot maintains its two farthest neighbours, and where the number of points occupied by 
the robots does not change anymore; we then define the notion of anchored mutual chains, we prove the existence of a 
primary mutual chain anchored at the two faults, as well as the formation of a complex hierarchical structure of mutual 
chains; we finally prove convergence of all these mutual chains. We conclude in Section 5 with some open problems and 
research directions.

2. Preliminaries

2.1. Model and notation

Let R = {R0, R1, ..., Rn} denote a set of n identical robots moving on a line, simultaneously activated in synchronous time 
steps according to the Look-Compute-Move model. At each activation, the robots “see” the positions of the ones that are 
visible to them (each robot can see up to a fixed distance V ), they all compute a destination point, and they move to that 
point. The robots are oblivious in the sense that the computation at time t solely depends on the positions of the robots 
perceived at that step. We assume that two robots are permanently faulty and do not participate in any activity; their faulty 
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status, however, is not visible and they appear identical to the others. In this paper, when we need to consider an arbitrary 
robot in R but we do not need to refer to its index, we write: “let x ∈R”. When we need to consider an arbitrary robot in 
R and we need to refer to its index, we write: “let 0 ≤ i ≤ n such that Ri ∈R”.

Given a robot x ∈ R, let x(t) denote its position at time t with respect to the leftmost faulty robot, which is considered 
to be at position 0 on the real axis. Note that we use this notation for convenience, but the robots themselves do not need 
to have a common notion of left/right orientation. With an abuse of notation x(t) may indicate both the robot itself and 
its position at time t . Let R(t) = {R0(t), R1(t), ..., Rn(t)} denote the configuration of robots at time t . Different robots do 
not necessarily occupy distinct positions. Indeed, there can exist a time t ≥ 0 and two different robots x, y ∈ R such that 
x(t) = y(t). Note however that non-faulty robots in the same position behave in the same way and can be considered as a 
single one. Indeed, when non-faulty robots end up in the same position, we say that they merge and from that moment on 
they will be considered as one.

Throughout the paper, we suppose that R0 is the leftmost faulty robot and Rn is the rightmost faulty robot. Therefore, 
for all t ≥ 0, we have R0(t) = 0 and Rn(t) is equal to some positive fixed position on the real axis.

We denote the distance between two robots x, y ∈ R at time t by |x(t) − y(t)|. We denote by [α, β] the interval of real 
numbers starting at α ∈R and ending at β ∈R, where α ≤ β . Let N(x(t)) be the set of robots visible by x at time t , i.e.,

N(x(t)) = {y(t) ∈ R(t) | |x(t) − y(t)| ≤ V }.
Let r(x(t)) (respectively l(x(t))) denote the rightmost (respectively the leftmost) visible robot from robot x at time t .

We say that a configuration of robots R = {R0, R1, ..., Rn} converges to a pattern P = {p0, p1, ..., pn} if for all 0 ≤ i ≤ n, 
Ri(t) tends to pi as t tends to ∞, which we write Ri(t) 

t→∞−→ pi throughout the paper.

2.2. Point-convergence

A classical problem for oblivious robots is gathering: the robots, initially placed in arbitrary positions, need to find 
themselves on the same point, not established a-priori. The convergence version of the problem requires the robots to 
converge toward a point. A solution to this problem is given by the well known algorithm by Ando et al. [2]. The algorithm 
achieves convergence to a point, not only in Fsync systems, but also in Ssync (i.e., when at each time step, only a subset of 
the robots is activated), as long as every robot is activated infinitely often.

Convergence2D [2] (for robot Ri at time t)

• ∀R j(t) ∈ N(Ri(t)) \ {Ri(t)},
– d j(t) := dist(Ri(t), R j(t)),
– θ j(t) := 	 ci(t)Ri(t)R j(t),

– l j(t) := (d j(t)/2) cos(θ j(t)) +
√

(V /2)2 − ((d j(t)/2) sin(θ j(t)))2,

• limit := minR j(t)∈N(Ri(t))\{Ri(t)}{l j(t)},
• goal := dist(Ri(t), ci(t)),
• D := min{goal, limit},
• p := point on Ri(t)ci(t) at distance D from Ri(t).
• Move towards p.

Robots are initially placed in arbitrary positions in a 2-dimensional space, with limited visibility. Let SCi(t) denotes the 
smallest enclosing circle of the positions of robots in R(t) seen by Ri(t); let ci(t) be the center of SCi(t). According to 
the algorithm, Ri(t) moves toward ci(t), but only up to a certain distance. Specifically, its destination is the point p on the 
segment Ri(t)ci(t) that is closest to ci(t) and that satisfies the following condition: For every robot R j(t) ∈ N(Ri(t)), p lies 
in the disk Ci(t) whose center is the midpoint of Ri(t) and R j(t), and whose radius is V /2. This condition ensures that Ri

and R j will still be visible after the movement of Ri(t), and possibly of R j(t).

2.2.1. The 1-dimensional case
Consider now the same algorithm in the particular case of a one-dimensional setting when the space where the robots 

can move is a line. In this setting, the algorithm (Convergence1D) becomes quite simple because the smallest enclosing 
circle of the visible robots is the segment delimited by the two farthest apart robots on the two sides, and a robot moves 
to occupy the mid-point between them. More precisely, if a robot sees robots only on one side, it moves to the middle 
between its current position and the farthest visible robot; if it sees robots on both sides, it moves to the middle between 
the farthest visible to the left and the farthest visible to the right.
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Convergence1D (for robot Ri at time t)

• Let l(Ri(t)) (resp. r(Ri(t))) be the farthest visible robots to the left (resp. to the right). If 
none is visible, let l(Ri(t)) = Ri(t) (resp. r(Ri(t)) = Ri(t)).

• Move to the midpoint between l(Ri(t)) and r(Ri(t)).

Theorem 2.1. [2] Executing Algorithm Convergence1D in FSynch or SSynch, the robots converge to a point.

3. Scattering on a segment

In [11], a classical scattering algorithm for robots in 1-dimensional systems has been analyzed both in FSynch and
SSynch in a slightly different model as the one considered in this paper. A variant of this result, which is derived in 
Theorem 3.2 below, will be needed later.

Consider a set of oblivious robots R = {R0, R1, ..., Rn} on a line that follow the Look-Compute-Move model, where R0
and Rn do not move (equivalently, this can be considered as a segment delimited by the positions of R0 and Rn). Let 
|R0(0), Rn(0)| = D . The robots have neighbouring visibility, which means that they are able to see the two closest robots on 
the two sides (while R0 and Rn know they are the delimiters of the segment). The algorithm of [11] (Spreading) makes the 
robot converge to a configuration where the distance between consecutive robots tends to D

n by having the extremal robots 
never move and the others move to the middle point between the two neighbouring robots.

Spreading (for robot Ri at time step t)

• If robots are visible on one side only: do nothing.
• Let Ri(t)− and Ri(t)+ be the neighbouring robots.
• Move to the midpoint between Ri(t)− and Ri(t)+ .

Theorem 3.1. [11] Executing Algorithm Spreading in FSynch or in SSynch on the set of robots R where the first and the last robots 
do not move, the robots converge to equidistant positions.

We now consider the convergence result by Cohen and Peleg [11], when restricting to the FSynch scheduler. We prove 
that, in FSynch, convergence is achieved using the same algorithm also in a slightly more general setting. In fact, we 
consider the case when R0 and Rn are not still, but they are each converging towards a point. This theorem will be needed 
later.

Theorem 3.2. Let R = {R0, R1, ..., Rn}, where R0(t) 
t→∞−→ R ′

0 and Rn(t) t→∞−→ R ′
n. Executing Algorithm Spreading in FSynch on the 

set of robots {R1, ..., Rn−1}, the robots converge to equidistant positions between R ′
0 and R ′

n.

Proof. Without loss of generality, suppose that R ′
0 = 0 and R ′

n = 1. We want to prove that Ri(t) 
t→∞−→ i

n for all 1 ≤ i ≤ n − 1. 
We follow the proof of Theorem 3.1. For all 1 ≤ i ≤ n − 1, the next position of Ri(t) is

Ri(t + 1) = Ri−1(t) + Ri+1(t)

2
.

Let ηi(t) = Ri(t) − i
n for all 0 ≤ i ≤ n. We get

ηi(t + 1) = ηi−1(t) + ηi+1(t)

2

for all 1 ≤ i ≤ n − 1. Our goal is to show that ηi(t) 
t→∞−→ 0 for all 0 ≤ i ≤ n. By the hypothesis, we already know that 

η0(t) 
t→∞−→ 0 and ηn(t) t→∞−→ 0. The fact that ηi(t) 

t→∞−→ 0 for all 1 ≤ i ≤ n − 1 relies on the following lemma. �
Lemma 3.3. Let m ≥ 2 be an integer. Consider a sequence ηi(t) of real numbers, where 0 ≤ i ≤ m and t ≥ 0. Suppose that η0(t) 

t→∞−→ 0

and ηm(t) t→∞−→ 0, and that

ηi(t + 1) = ηi−1(t) + ηi+1(t)

2
for all 1 ≤ i ≤ m − 1 and t ≥ 0. Moreover, suppose that there exists a positive real number M such that |ηi(t)| ≤ M for all 0 ≤ i ≤ m

and t ≥ 0. Then, for all 0 ≤ i ≤ m, ηi(t) 
t→∞−→ 0.
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The details of some calculations in this proof are technical. We present a proof sketch below and postpone the full proof 
to Appendix A.

Proof. By the hypothesis, the lemma is true for i = 0 and i = m. If m = 2, by the hypothesis,

|η1(t + 1)| =
∣∣∣∣η0(t) + η2(t)

2

∣∣∣∣ ≤ |η0(t)| + |η2(t)|
2

t→∞−→ 0.

Hence, assume that m ≥ 3. To deal with other values of i, let

ψ(t) =
m∑

i=0

η2
i (t).

We show that ψ(t) t→∞−→ 0, which completes the proof. Following the same approach as the one used in the proof of 
Theorem 3.1, we use the Fourier sine series of ηi(t). However, in our case, we need to be careful since η0(t) and ηm(t) are 
not necessarily equal to 0. For all 0 ≤ i ≤ m, 0 ≤ k ≤ m and t ≥ 0, let

g(i,k) =
√

2

m
sin

(
kiπ

m

)
and μk(t) =

m∑
i=0

ηi(t)g(i,k).

We have

ηi(t) =
m∑

k=0

μk(t)g(i,k) (1)

for all 1 ≤ i ≤ m − 1 and t ≥ 0. Moreover, we have

g(i,0) = g(i,m) = g(0,k) = g(m,k) = 0 (2)

for all 0 ≤ i ≤ m and 0 ≤ k ≤ m, from which

m∑
k=0

μk(t)g(0,k) =
m∑

k=0

μk(t)g(m,k) = 0.

Observe that for all 0 ≤ k ≤ m and 0 ≤ q ≤ m,

m∑
i=0

g(i,k)g(i,q) =
{

0 if k = 0, k = m, q = 0 or q = m

δk,q otherwise,
(3)

where δk,q stands for the Kronecker’s delta, i.e., δk,q = 1 if k = q and 0 otherwise. Moreover, observe that for all 0 ≤ k ≤ m
and t ≥ 0,

|μk(t)| =
∣∣∣∣∣

m∑
i=0

ηi(t)g(i,k)

∣∣∣∣∣ =
∣∣∣∣∣
m−1∑
i=1

ηi(t)g(i,k)

∣∣∣∣∣ ≤
m−1∑
i=1

|ηi(t)g(i,k)| ≤ (m − 1)

√
2

m
M ≤ √

2mM.

We can show that

ψ(t) = η2
0(t) + η2

m(t) +
m−1∑
k=1

μ2
k (t).

Moreover, for 1 ≤ k ≤ m − 1, we can show that

μk(t + 1) ≤ |η0(t)| + |ηm(t)| + cos

(
kπ

m

)
μk(t).

Therefore, we can show that

ψ(t + 1) ≤η2
0(t + 1) + η2

m(t + 1) + (m − 1) (|η0(t)| + |ηm(t)|)2

+ 2 (|η0(t)| + |ηm(t)|) (m − 1)
√

2mM + cos2
(π

m

)
ψ(t). (4)
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Since η0(t) 
t→∞−→ 0 and ηm(t) t→∞−→ 0, there exists a positive function ε(t) such that ε(t) t→∞−→ 0, ε(t) = O (1) and for all 

t ≥ 0, we have |η0(t)| ≤ ε(t), |η0(t + 1)| ≤ ε(t), |ηm(t)| ≤ ε(t) and |ηm(t + 1)| ≤ ε(t). Therefore, the right-hand side of 
inequality (4) is upper bounded by

ε2(t) + ε2(t) + 4(m − 1)ε2(t) + 4ε(t)(m − 1)
√

2mM + cos2
(π

m

)
ψ(t)

≤
(

2ε(t) + 4(m − 1)ε(t) + 4(m − 1)
√

2mM
)
ε(t) + cos2

(π

m

)
ψ(t)

≤ φ ε(t) + λψ(t),

where φ = 2ε(t) + 4(m − 1)ε(t) + 4(m − 1)
√

2mM = O (1) and λ = cos2
(
π
m

) ≤ cos2
(
π
3

) = 1
4 .

Consequently,

ψ(t) ≤
(

1 + λ + λ2 + ... + λt−1
)

φ ε(t) + λtψ(0)

= 1 − λt

1 − λ
φ ε(t) + λtψ(0)

t→∞−→ 0. �
4. Robots’ dynamics

We now consider Algorithm Convergence1D, when the robots are initially placed in arbitrary points of a line. We remind 
that, in Algorithm Convergence1D, at time t robot x(t) observes the position of all robots at distance at most V and it moves 
to occupy the middle point between the right-most visible robots r(x(t)) and the left-most visible robot l(x(t)). If robots 
are visible on one side only, x(t) moves to the middle point between itself and the farthest visible robot. Note that the 
indication of left and right is used for convenience, but a consistent left/right orientation is not needed for the robots, 
which simply consider for their computation the farthest robots on the two sides.

It is easy to see that if the configuration contains a single faulty robot, the other robots converge toward it. In this Section 
we then focus on the case when the system contains two faults and we show that, starting from an arbitrary configuration 
and following algorithm Convergence1D, the system converges towards a limit configuration.

4.1. Basic properties

We start with a series of lemmas leading to the proof of two crucial properties: there exists a time after which robots 
preserve their farthest neighbours (Theorem 4.8) and there exists a time after which the number of different positions 
occupied by them becomes constant (Corollary 4.7).

Lemma 4.1 (No crossing). If x, y ∈R are two non-faulty robots and x(t) < y(t), then x(t + 1) ≤ y(t + 1).

Proof. Since x(t) < y(t), we have that r(x(t)) ≤ r(y(t)) and l(x(t)) ≤ l(y(t)) by definition. It follows that x(t + 1) =
l(x(t))+r(x(t))

2 ≤ l(y(t))+r(y(t))
2 = y(t + 1). �

With the next three lemmas (4.2, 4.3, and 4.4), we show that all robots, except possibly two, eventually enter the 
segment [R0, Rn] delimited by the two faulty robots. At most two robots might perpetually stay outside of it, one to the left 
of R0 and one to the right of Rn . If this is the case, however, the two outsiders converge to R0 and Rn , respectively.

Lemma 4.2. Either one of the following two scenarios happens as t → ∞.

1. In a finite number of steps, all robots place themselves inside the line segment [R0, Rn] and stay inside the line segment [R0, Rn].
2. There is at least one robot x that never enters the line segment [R0, Rn]. If x(0) < R0 , then x(t) t→∞−→ R0 . If x(0) > Rn, then 

x(t) t→∞−→ Rn.

Proof. Since the two faulty robots do not move, they are already inside [R0, Rn]. For the rest of the proof, we consider only 
the non-faulty robots. Let x� and xr be the leftmost and the rightmost non-faulty robots, respectively.

1. By Lemma 4.1, x� (respectively xr ) stays the leftmost (respectively the rightmost) non-faulty robot at all steps of the 
execution of the algorithm. Therefore, it is sufficient to prove the lemma for x� and xr .
We first argue that if at some time t0 > 0, x�(t0) ∈ [R0, Rn], then for all t > t0, x�(t) ≥ R0. Since x� is the leftmost 
non-faulty robot and x�(t0) ∈ [R0, Rn], we have l(x�(t0)) ≥ R0. Therefore,



J.-L. De Carufel, P. Flocchini / Information and Computation 271 (2020) 104478 7
x�(t0 + 1) = l(x�(t0)) + r(x�(t0))

2
≥ R0 + x�(t0)

2
≥ R0 + R0

2
= R0,

from which the proof follows by induction on t . A symmetric argument shows that if xr(t0) ∈ [R0, Rn], then for all 
t > t0, xr(t) ≤ Rn . It remains to consider the case where x� or xr never enters [R0, Rn].

2. Suppose that x� does not enter the interval [R0, Rn] in a finite number of steps. Therefore,3 x�(t) < R0 for all t ≥ 0. 
Together with the fact that x� is the leftmost non-faulty robot, we get l(x�(t)) = x�(t) and r(x�(t)) > x�(t) for all t ≥ 0. 
Therefore,

x�(t + 1) = l(x�(t)) + r(x�(t))

2
>

x�(t) + x�(t)

2
= x�(t)

for all t ≥ 0. It follows that x�(t) is strictly increasing for t ≥ 0. Since x�(t) < R0 for all t ≥ 0, x�(t) converges to a point 
x∗
� ≤ R0 as t → ∞. Observe that x�(t) < x∗

� for all t ≥ 0.

Since x�(t) 
t→∞−→ x∗

� , there is a time t′ > 0 such that x∗
� − x�(t) < V

4 for all t ≥ t′ . We claim that r(x�(t)) = R0 for all t ≥ t′ . 
Assume this is true. Since l(x�(t)) = x�(t) for all t ≥ t′ , then

x�(t + 1) = l(x�(t)) + r(x�(t))

2
= x�(t) + R0

2
= x�(t) + 0

2
= x�(t)

2

for all t ≥ t′ . This shows that x�(t) 
t→∞−→ R0 = 0, i.e., x∗

� = R0.
We prove our claim by contradiction. Suppose that there is a time t0 ≥ t′ such that r(x�(t0)) 	= R0. Let δ = x∗

� − x�(t0) <
V
4 . Let x1(t0) = r(x�(t0)) 	= R0 and δ′ = x1(t0) − x∗

� . We do not know whether x1(t0) is to the left or to the right of 
x∗
� , i.e., we do not know the sign of δ′ . Since x�(t) is strictly increasing and x�(t) < x∗

� for all t ≥ 0, we have |δ′| < δ. 
Moreover, x1(t0) − x�(t0) = δ + δ′ and x∗

� − x�(t0 + 1) = δ−δ′
2 . We now look at the rightmost visible robot from x1(t0). We 

have r(x1(t0)) − x�(t0) > V , otherwise x1(t0) would not be the rightmost visible robot from x�(t0). Therefore, we have

r(x1(t0)) − x1(t0) = (r(x1(t0)) − x�(t0)) + (x�(t0) − x1(t0)) > V − (δ + δ′). (5)

We also have

x1(t0 + 1) − x�(t0 + 1) = l(x1(t0)) + r(x1(t0))

2
− l(x�(t0)) + r(x�(t0))

2

= x�(t0) + r(x1(t0))

2
− x�(t0) + x1(t0)

2

= r(x1(t0)) − x1(t0)

2
(6)

< V ,

from which x1(t0 + 1) is visible from x�(t0 + 1). This leads to

x�(t0 + 2) − x∗
� = l(x�(t0 + 1)) + r(x�(t0 + 1))

2
− x∗

�

≥ x�(t0 + 1) + x1(t0 + 1)

2
− x∗

�

= (x�(t0 + 1) − x∗
�) + (x1(t0 + 1) − x∗

�)

2

= (x�(t0 + 1) − x∗
�) + (x1(t0 + 1) − x�(t0 + 1)) + (x�(t0 + 1) − x∗

�)

2

= 2(x�(t0 + 1) − x∗
�) + (x1(t0 + 1) − (x�(t0 + 1))

2

>
(δ′ − δ) + V −(δ+δ′)

2

2
from (6) and (5)

= V − 3δ + δ′

4

>
V − 4δ

4
> 0,

3 The case where x� is to the right of Rn is taken care of by the case where xr is to the right of Rn .



8 J.-L. De Carufel, P. Flocchini / Information and Computation 271 (2020) 104478
from which x�(t0 + 2) > x∗
� , which is a contradiction since x�(t) < x∗

� for all t ≥ 0. This completes the proof of our claim.
A symmetric argument holds for xr . �

Lemma 4.3 (No more crossing). If x is a non-faulty robot, it will cross at most a finite number of times with a faulty robot.

Proof. Let x� be the leftmost non-faulty robot. From Lemma 4.1, x� will stay the leftmost non-faulty robot at all steps of 
the execution of the algorithm. Moreover, from Lemma 4.2, two scenarios are possible: after some time t0, (1) x� enters the 
line segment [R0, Rn] and for all t ≥ t0, x�(t) ≥ R0 or (2) x�(t) is strictly increasing for t ≥ 0 and x�(t) 

t→∞−→ R0 = 0.

1. In this case, after time t0, no robot will cross R0.
2. In this case, let x be a robot and t′ ≥ 0 be a time such that x(t′) > 0, x(t′ + 1) < 0 and R0 − x�(t′) = 0 − x�(t′) < V

2 . Since 
x� is the leftmost non-faulty agent, we have

l(x(t′)) ≥ x�(t
′). (7)

Moreover, since x(t′ + 1) < R0 = 0, we have

x(t′ + 1) = l(x(t′)) + r(x(t′))
2

< R0 = 0. (8)

Therefore, from (8) and (7), we get

r(x(t′)) − x�(t
′) < (R0 − l(x(t′))) + (R0 − x�(t

′)) ≤ 2(R0 − x�(t
′)) < V . (9)

Thus, r(x�(t′)) = r(x(t′)) otherwise r(x(t′)) would not be the rightmost visible robot from x(t′).
Also, since x� is the leftmost non-faulty agent, we have

0 < x(t′) − x�(t
′) ≤ r(x(t′)) − x�(t

′) < V

by (9). Thus, l(x(t′)) = x�(t′) = l(x�(t′)).
Since r(x(t′)) = r(x�(t′)) and l(x(t′)) = l(x�(t′)), we have that x(t′ + 1) = x�(t′ + 1), i.e., x and x� merge at step t′ + 1. 
Since x�(t) is strictly increasing for t ≥ 0 and x�(t) 

t→∞−→ R0 = 0, x will not cross R0 = 0 anymore.

A symmetric argument with the rightmost non-faulty robot xr completes the proof. �
Lemma 4.4 (At most two outsiders). Let x� (respectively xr ) be the leftmost (respectively the rightmost) non-faulty robot.

• If x� never enters the line segment [R0, Rn], then after a finite number of steps, x� is the only robot to the left of R0.
• If xr never enters the line segment [R0, Rn], then after a finite number of steps, xr is the only robot to the right of Rn.

Proof. Assume that there is a robot x and a time t ≥ 0 such that x�(t) < x(t) < R0 = 0 (the case where Rn < x(t) < xr(t) is 
symmetric). Moreover, assume that R0 − x�(t) < V

2 and xr(t) − Rn < V
2 . (Observe that if xr(t) ≤ Rn , then xr(t) − Rn ≤ 0 < V

2 .) 
We consider two cases: (1) x eventually enters the line segment [R0, Rn] or (2) not.

1. If x enters the line segment [R0, Rn] and stays there, then after a finite number of steps, it is not outside of the line 
segment [R0, Rn]. Therefore, let us consider the case where x enters the line segment [R0, Rn] and eventually gets out 
of [R0, Rn]. If x gets out of [R0, Rn] by crossing R0, then it merges with x� (refer to the proof of Lemma 4.3). If x gets 
out of [R0, Rn] by crossing Rn , then it merges with xr (refer to the proof of Lemma 4.3).

2. Assume that x never enters the line segment [R0, Rn]. This part of the proof is similar to the proof of Lemma 4.3. Since 
x� is the leftmost non-faulty agent, we have

l(x(t)) ≥ x�(t). (10)

Moreover, since x never enters the line segment [R0, Rn], we have

x(t + 1) = l(x(t)) + r(x(t))

2
< R0 = 0. (11)

Therefore, from (11) and (10), we get

r(x(t)) − x�(t) < (R0 − l(x(t))) + (R0 − x�(t)) ≤ 2(R0 − x�(t)) < V . (12)

Thus, r(x�(t)) = r(x(t)) otherwise r(x(t)) would not be the rightmost visible robot from x(t).
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Also, since x� is the leftmost non-faulty agent, we have

0 < x(t) − x�(t) ≤ r(x(t)) − x�(t) < V

by (12). Thus, l(x(t)) = x�(t) = l(x�(t)).
Since r(x(t)) = r(x�(t)) and l(x(t)) = l(x�(t)), we have that x(t + 1) = x�(t + 1), i.e., x and x� merge at step t + 1.

In all cases, if there is a robot x between x� and R0, then after a finite number of steps, x enters the line segment 
[R0, Rn] and stays there or x merges with another robot. Since we have a finite number of robots, after a finite number of 
steps, x� will be the only robot satisfying x� < R0. �

The following corollary states that if x� (respectively xr ) never enters [R0, Rn], then after a finite number of steps, it will 
not interact with any other robots. Hence, we can ignore it.

Corollary 4.5. Let x� (respectively xr ) be the leftmost (respectively the rightmost) non-faulty robot.

• If x� never enters [R0, Rn], then after a finite number of steps, x� only sees itself and R0. Moreover, only x� and R0 see x� .
• If xr never enters [R0, Rn], then after a finite number of steps, xr only sees itself and Rn. Moreover, only xr and Rn see xr .

Proof. From Lemma 4.4, after a finite number of steps, x� will be the only non-faulty agent to the left of R0. Let t ≥ 0 be 
any time such that R0 − x�(t) < V

4 . From the proof of Lemma 4.2, we know that r(x�(t)) = R0. Hence, x� only sees itself 
and R0, from which we know that x� and R0 see x� . Assume that a non-faulty agent x ∈ [R0, Rn] sees x� at time t . Then 
x(t) − x�(t) ≤ V , from which x�(t) sees x(t). This contradicts the fact that r(x�(t)) = R0.

A symmetric argument holds for xr . �
We now show that during the evolution of the system, a robot never loses visibility of the robots seen in the past. 

This proves that even in the presence of faulty robots, starting from a configuration where the robots’ visibility graph is 
connected, the robots’ visibility graph stays connected.

Lemma 4.6 (Preserved visibility). Let t ≥ 0 be an arbitrary time and y ∈ N(x(t)). For all t′ > t, y ∈ N(x(t′)).

Proof. Let y ∈ N(x(t)). Hence, we have |x(t) − y(t)| ≤ V . Without loss of generality, suppose that y(t) is to the left of x(t), 
from which 0 < x(t) − y(t) ≤ V . We consider three cases: (1) x and y are non-faulty, (2) exactly one of x and y is faulty, or 
(3) both x and y are faulty.

1. In this case, by Lemma 4.1, x(t + 1) − y(t + 1) ≥ 0. We have

x(t + 1) − y(t + 1) = l(x(t)) + r(x(t))

2
− l(y(t)) + r(y(t))

2

≤ y(t) + (x(t) + V )

2
− (y(t) − V ) + x(t)

2
= V .

2. Without loss of generality, suppose that x is faulty and y is non-faulty. If x(t + 1) − y(t + 1) ≥ 0, we have

x(t + 1) − y(t + 1) = x(t) − l(y(t)) + r(y(t))

2

≤ x(t) − (y(t) − V ) + x(t)

2

= x(t) − y(t) + V

2

≤ V + V

2
= V .

If y(t + 1) − x(t + 1) ≥ 0, we have

y(t + 1) − x(t + 1) = l(y(t)) + r(y(t))

2
− x(t)

≤ x(t) + (y(t) + V ) − x(t)

2
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Fig. 1. A mutual chain of robots C(t) = {x1(t), x2(t), x3(t), x4(t), x5(t)} anchored in x0 and x6, where the arrows indicate farthest visibility.

= y(t) − x(t) + V

2

≤ 0 + V

2
< V .

3. In this case, we have x(t + 1) = x(t) and y(t + 1) = y(t), so the result follows. �
A robot never loses visibility of the robots seen in the past; however, notice that new robots could enter its visibility 

range (inclusion). It is also possible for robots to merge and occupy the same position (merging). Once some robots occupy 
the same position they act as one single robot (except possibly for a non-faulty robot merging with a faulty one).

Definition 1 (Size-stable time). A time t0 is called a size-stable time if, for all t ≥ t0,

• there will be no inclusions, mergings or crossings in the system,
• and either all agents are inside the line segment [R0, Rn] or at most one agent is on each side of the line segment 

[R0, Rn] and stay outside of [R0, Rn]. Moreover, the two outsiders converge to R0 and Rn , respectively.

Observe that if t0 is a size-stable time, then t is a size-stable time for all t ≥ t0.
From Lemmas 4.1 and 4.3, after a finite number of steps, no two robots are crossing each others. From Lemma 4.4, either 

all robots are inside the line segment [R0, Rn] after a finite number of steps, or at most two robots will stay outside of the 
line segment [R0, Rn] for all time t ≥ 0. We then get the following corollary.

Corollary 4.7. For all sets of robots, there exists a size-stable time t0.

Finally, from Lemmas 4.1, 4.3 and 4.6, and Corollary 4.7, we can conclude that at any time after a size-stable time t is 
reached, the farthest left and right neighbours, namely l(x(t)) and r(x(t)), of any robot x will never change.

Theorem 4.8 (Preserved-farthest-neighbours). Let t be a size-stable time and x ∈ R be a robot. For all t′ > t, r(x(t′)) = r(x(t)) and 
l(x(t′)) = l(x(t)).

For the rest of the paper, we suppose that the earliest size-stable time is 0. Thus, from Corollary 4.7, for all t ≥ 0, t is a 
size-stable time.

4.2. Convergence of mutual chains

We now define the notion of mutual chain as a set of robots that are mutually the farthest from each other.

Definition 2 (Mutual chain). Let 0 ≤ k ≤ n be an integer and t ≥ 0 be any size-stable time. A mutual chain at time t (or mutual 
chain for short) is a configuration C(t) = {x0(t), x1(t), ..., xk(t)} ⊆ R(t) made of k + 1 robots such that for all 0 ≤ i ≤ k − 1, 
l(xi+1(t)) = xi(t) and r(xi(t)) = xi+1(t) (refer to Fig. 1).

If r(xi(t)) = x j(t) and l(x j(t)) = xi(t), we say that xi and x j are mutually chained at time t or that xi(t) and x j(t) are 
mutually chained.

Observe that in a mutual chain, the difference between two consecutive robots is more than V
2 . The anchors of a mutual 

chain C(t) = {x0(t), x1(t), ..., xk(t)} are the farthest left neighbour of x0(t) and the farthest right neighbour of xk(t).

Definition 3 (Anchors). Given a mutual chain C(t) = {x0(t), x1(t), . . . , xk(t)}, we say that l(x0(t)) and r(xk(t)) are the left and 
right anchors of C(t) (or that C(t) is anchored at l(x0(t)) and r(xk(t))) (refer to Fig. 1).
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Fig. 2. The configuration {x1, x2, x3, x4} is a mutual chain. It is anchored at x1 and x4.

Fig. 3. The configuration {x1} is a mutual chain. It is anchored at x0 and x2.

Fig. 4. Illustration of Lemma 4.10.

Note that the definition of anchor allows the anchors of a mutual chain to be part of the mutual chain (refer to Fig. 2). 
Moreover, the definition of mutual chain allows a mutual chain to possibly contain only one robot (refer to Fig. 3). Note that 
the anchors do not have to be faulty robots for this situation to happen. Indeed, any robot x forms a mutual chain {x(t)}
anchored at l(x(t)) and r(x(t)).

We now prove the formation, during the execution of the algorithm, of a special unique mutual chain called primary 
chain. The primary chain is a mutual chain starting from R0 and ending in Rn . We will then introduce a hierarchical notion 
of mutual chains with different levels, where chains of some level are anchored in lower level ones. Intuitively, if a robot 
remains strictly between two consecutive robots of a given chain, then it belongs to a chain which is anchored in a lower 
level chain. Moreover, we will show that the robots will eventually arrange themselves in such a hierarchical structure of 
mutual chains.

Let us first prove the existence of the primary chain.

Theorem 4.9 (Primary chain). There exists a configuration of robots C1 = {x0, x1, ..., xk} ⊆ R such that at any size-stable time t > 0, 
C1(t) is a mutual chain anchored at R0 and Rn, where x0 = R0 and xk = Rn. This mutual chain is called the primary chain of R and 
it is unique.

Before we prove Theorem 4.9, we need the following technical lemma. Intuitively, the lemma states that when the 
distance between two mutually chained robots tends to V (as t → ∞), this limit behaviour propagates to the leftmost and 
rightmost visible robots.

Lemma 4.10. Let xα+1, xα+2 ∈R such that for all t ≥ 0 (refer to Fig. 4),

• xα+1(t) and xα+2(t) are mutually chained,

• d(t) = (xα+2(t) − xα+1(t))
t→∞−→ V ,

• l(xα+1(t)) 	= xα+1(t)
• and r(xα+2(t)) 	= xα+2(t).

Then r(xα+2(t)) − xα+2(t) 
t→∞−→ V and xα+1(t) − l(xα+1(t)) 

t→∞−→ V .

Proof. We have

xα+1(t + 1) = l(xα+1(t)) + r(xα+1(t))

2
= l(xα+1(t)) + xα+1(t) + d(t)

2
(13)

and
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xα+2(t + 1) = l(xα+2(t)) + r(xα+2(t))

2

= xα+1(t) + r(xα+2(t))

2

= xα+1(t) + r(xα+2(t)) + d(t) − d(t)

2

= xα+1(t) + r(xα+2(t)) + d(t) − (xα+2(t) − xα+1(t))

2

= 2xα+1(t) − xα+2(t) + r(xα+2(t)) + d(t)

2
. (14)

Since xα+1 and xα+2 are mutually chained and d(t) t→∞−→ V , there is a function ε(t) such that ε(t) t→∞−→ 0 and

d(t + 1) = xα+2(t + 1) − xα+1(t + 1) > V − ε(t).

Consequently,

d(t + 1)

= xα+2(t + 1) − xα+1(t + 1)

=
(

2xα+1(t) − xα+2(t) + r(xα+2(t)) + d(t)

2

)
−

(
l(xα+1(t)) + xα+1(t) + d(t)

2

)
by (13) and (14)

= xα+1(t) − l(xα+1(t)) + r(xα+2(t)) − xα+2(t)

2
> V − ε(t). (15)

Let δ1(t) and δ2(t) be two functions such that V − δ1(t) = xα+1(t) − l(xα+1(t)) and V − δ2(t) = r(xα+2(t)) − xα+2(t). Since 
l(xα+1(t)) 	= xα+1(t) and r(xα+2(t)) 	= xα+2(t) for all t ≥ 0, we have 0 ≤ δ1(t) < V and 0 ≤ δ2(t) < V . Therefore, from (15), 
we get

V − δ1(t) + V − δ2(t)

2
> V − ε(t),

from which

0 ≤ δ1(t) + δ2(t)

2
< ε(t)

t→∞−→ 0.

This means that δ1(t) 
t→∞−→ 0 and δ2(t) 

t→∞−→ 0, from which xα+1(t) − l(xα+1(t)) 
t→∞−→ V and r(xα+2(t)) − xα+2(t) 

t→∞−→ V . �
Proof of Theorem 4.9. [Uniqueness] We first explain that if the primary chain exists, then it is unique. Since R0 = x0 and 
Rn = xk are part of the mutual chain, if we start at R0, we get x1 = r(R0) and xi+1 = r(xi) for all 0 ≤ i ≤ k − 1, where 
xk = Rn . So each xi is uniquely defined.

[Existence] We now prove that the primary chain does exist. By Lemma 4.4, at any size-stable time t , there is at most 
one robot x� to the left of R0 which will never enter [R0, Rn] and there is at most one robot xr to the right of Rn which will 
never enter [R0, Rn]. Moreover, x�

t→∞−→ R0 and xr
t→∞−→ Rn . From Corollary 4.5, after a finite number of steps, x� and xr will 

not interact with any other robots. Hence, without loss of generality, we can assume that R(t) ⊂ [R0, Rn] for any size-stable 
time t . We need to prove that the primary chain exists.

We prove the existence of the primary chain by contradiction. Therefore, assume that there does not exist any mu-
tual chain. Let us start by summarizing the steps of the proof. 1) We construct a particular configuration, composed by a 
forward-chain from R0 and connecting each node to its farthest right neighbour until Rn is reached and a backward chain 
from Rn connecting each node to its farthest left neighbour back to R0. 2) We then show that the two chains converge to 
each other, i.e., they converge to a single chain, called right-left chain. This construction does not directly guarantee that the 
right-left chain is a mutual chain. We then show a contradiction, reasoning on the total length of the segment [R0, Rn]. 3) 
A consequence of the right-left chain not being a mutual chain is that the total length of the segment between R0 and Rn

is strictly smaller than ( j + 1)V (where j + 1 is the number of intervals between consecutive robots in the chain). 4) On the 
other hand, each such interval converges to V , thus implying that the total length of the segment is a number arbitrarily 
close to ( j + 1)V . This contradiction implies that the right-left chain is indeed mutual.

1) Construction of forward and backward chains. Let us consider a configuration of robots {x0(t), x1(t), ..., x j+1(t)} ⊆ R(t), 
called forward chain (refer to Fig. 5), such that:
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Fig. 5. Illustration of the proof of Theorem 4.9.

• x0(t) = x0 = R0,
• xi+1(t) = r(xi(t)) for all 0 ≤ i ≤ j < n
• and x j+1(t) = x j+1 = Rn

We define another configuration of robots, called backward chain, {y0(t), y1(t), ..., y j+1(t)} ⊆ R(t) as follows. Let 
y j+1(t) = x j+1(t) and for all 0 ≤ i ≤ j, let yi(t) = l(yi+1(t)) (refer to Fig. 5). Let us call the union of the two chains right-left 
chain. We now prove two useful properties about the right-left chain.

Property 1 (Alternation property.) For all 1 ≤ i ≤ j + 1, we have xi−1(t) < yi(t) ≤ xi(t). We prove this property by in-
duction, starting at i = j + 1. For the base case, notice that y j+1(t) = x j+1(t) by definition. Suppose that 
xi−1(t) < yi(t) ≤ xi(t) for some 1 ≤ i ≤ j + 1. Then, yi−1(t) = l(yi(t)) ≤ xi−1(t) otherwise this would contradict 
the fact that r(xi−1(t)) = xi(t). Moreover, xi−2(t) < l(yi(t)) = yi−1(t) otherwise this would contradict the fact that 
r(xi−2(t)) = xi−1(t).

Property 2 (Starting point property.) We have that y0(t) = y0 = R0. Indeed,

y0(t) = l(y1(t)) by the definition of y0(t),

≤ l(x1(t)) by Property 1,

= R0,

otherwise x1(t) would not be the rightmost visible robot from R0 = x0.

2) Convergence of forward and backward chains to a right-left chain. Notice that since the forward chain {x0(t), x1(t), ...,
x j+1(t)} is not a mutual chain, there exists an i with 1 ≤ i ≤ j such that xi−1(t) < yi(t) < xi(t). For all 1 ≤ i ≤ j + 1, let 
ai(t) = yi(t) − xi−1(t) and si(t) = xi(t) − yi(t). In what follows, our aim is to prove that xi(t) and yi(t) get arbitrarily close 
whenever t → ∞. We do this by showing that si(t) 

t→∞−→ 0.
From Property 1, we have ai(t) > 0 and si(t) ≥ 0 for all 1 ≤ i ≤ j + 1. Moreover, si(t) = 0 if and only if yi(t) = xi(t). 

Notice that l(xi(t − 1)) ≤ xi−1(t − 1), otherwise there would be a contradiction with the fact that r(xi−1(t − 1)) = xi(t − 1). 
Therefore,

xi(t) = l(xi(t − 1)) + r(xi(t − 1))

2
≤ xi−1(t − 1) + xi+1(t − 1)

2
,

from which

xi(t) ≤

⎧⎪⎨
⎪⎩

R0 i = 0,

xi−1(t − 1) + 1
2 (ai(t − 1) + si(t − 1) + ai+1(t − 1) + si+1(t − 1)) 1 ≤ i ≤ j,

Rn i = j + 1.

(16)

Moreover, notice that r(yi(t − 1)) ≥ yi+1(t − 1), otherwise there would be a contradiction with the fact that l(yi+1(t − 1)) =
yi(t − 1). Therefore,

yi(t) = l(yi(t − 1)) + r(yi(t − 1))

2
≥ yi−1(t − 1) + yi+1(t − 1)

2
,

from which

yi(t) ≥

⎧⎪⎨
⎪⎩

R0 i = 0,

yi−1(t − 1) + 1
2 (si−1(t − 1) + ai(t − 1) + si(t − 1) + ai+1(t − 1)) 1 ≤ i ≤ j,

Rn i = j + 1.

(17)
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Since si(t) = xi(t) − yi(t), by subtracting (17) from (16) we obtain

si(t) ≤

⎧⎪⎨
⎪⎩

0 i = 0,
1
2 (si−1(t − 1) + si+1(t − 1)) 1 ≤ i ≤ j,

0 i = j + 1.

(18)

We are now ready to prove that for all 0 ≤ i ≤ j + 1, si(t) 
t→∞−→ 0, implying that |xi(t) − yi(t)| t→∞−→ 0. Notice that we already 

have y0(t) = x0(t) and y j+1(t) = x j+1(t) by definition. We then have:

si(t) ≤ 1

2
(si−1(t − 1) + si+1(t − 1))

≤ 1

4
(si−2(t − 2) + 2si(t − 2) + si+2(t − 2))

≤ 1

8
(si−3(t − 3) + 3si−1(t − 3) + 3si+1(t − 3) + si+3(t − 3))

≤ 1

16
(si−4(t − 4) + 4si−2(t − 4) + 6si(t − 4) + 4si+2(t − 4) + si+4(t − 4))

...

≤ 1

2t

t∑
k=0

(
t

k

)
si−t+2k(0),

where si(t) = 0 for all i ≤ 0 and i ≥ j + 1.
In order to determine the limit of si(t) when t → ∞, we need to make a few observations. First of all, the si(t)’s in 

the summation with i ≤ 0 or i ≥ j + 1 are all equal to zero. In other words, regardless of the value of t , there are at most 
j non-zero values in the summation. Also note that since the segment delimited by the two faulty robots has a constant 
size, the values of the si ’s are bounded. Let C be the value of the largest such si ever occurring. Since the largest binomial 
coefficient is the central one (or the central ones for odd values of t), we can write

0 ≤ si(t) ≤ 1

2t
j

(
t

� t
2 �

)
C .

Since4
( t
� t

2 �
) ∼ 2t√

π t
2

, we have

0 ≤ lim
t→∞ si(t) ≤ lim

t→∞
1

2t
j

(
t

� t
2 �

)
C = lim

t→∞
1

2t
j

2t√
π t

2

C = 0,

from which limt→∞ si(t) = 0.
We are ready to derive a contradiction.

3) Length of the segment strictly smaller than ( j + 1)V . Since the right-left chain is not a mutual chain, and x0 and xn are 
not moving, the distance between x0 and xn must be strictly smaller than ( j + 1)V (otherwise x j and y j would necessarily 
coincide, for all j). So, there exists a real number δ > 0 such that xn − x0 = Rn − R0 = ( j + 1)V − δ.

4) Distance between xi(t) and xi+1(t) tending to V . Let us consider any sub-chain of the right-left chain for which the 
xi ’s and the yi ’s are distinct except for the extremal ones. More precisely, let α and β be two indices such that xα = yα , 
xβ = yβ and xi 	= yi for all α < i < β (refer to Fig. 6). Notice that l(xα+1) = xα = yα , otherwise this would contradict the fact 
that l(yα+1) = xα = yα . We also have r(yβ−1) = xβ = yβ , otherwise this would contradict the fact that r(xβ−1) = xβ = yβ . 
Therefore,

l(xα+1) = xα = yα,

r(xα+1) = xα+2,

l(yβ−1) = yβ−2,

r(yβ−1) = xβ = yβ.

4 We write f (t) ∼ g(t) whenever limt→∞ f (t)
g(t) = 1.
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Fig. 6. Illustration of the contradiction in the proof of Theorem 4.9. We do not make any assumption about xα−1 being equal or not to yα−1, nor about 
xβ+1 being equal or not to yβ+1.

Fig. 7. An example of a primary chain {x0, x1, . . . x6} with two level-2 chains: {z} (anchored at x0 and x1) and {y1, y2, y3} (anchored at x3 and x6).

Notice that xα+1 and yβ−1 cannot have the same leftmost and rightmost visible robots, otherwise they would merge in one 
step, which is not possible at a size-stable time. This implies that β > α + 2 (we need this to apply Lemma 4.10 later on). 
Since there cannot be any merging, given that l(yα+1) = xα = yα , we must also have that xα+2 is not visible from yα+1 at 
any time. Therefore, for all t ≥ 0, sα+1(t) + aα+2(t) + sα+2(t) > V . Since r(xα+1) = xα+2, for all t ≥ 0, aα+2(t) + sα+2(t) ≤ V . 
Together with the fact that sα+1(t) 

t→∞−→ 0 and sα+2(t) 
t→∞−→ 0, we get that aα+2(t) 

t→∞−→ V . Therefore, xα+2(t) −xα+1(t) 
t→∞−→ V .

Our goal is to apply Lemma 4.10 and conclude that xα+1(t) − xα(t) t→∞−→ V and xα+3(t) − xα+2(t) 
t→∞−→ V . However, since 

xα+1(t) and xα+2(t) are not mutual, we cannot apply Lemma 4.10 directly. Let x′
α+1(t) = l(xα+2(t)). Notice that we must 

have the following two inequalities:

yα+1(t) ≤ x′
α+1(t) ≤ xα+1(t),

otherwise we would have contradictions, respectively, with the following two facts:

l(yα+2(t)) = yα+1(t), r(xα+1(t)) = xα+2(t).

Moreover, we have r(x′
α+1(t)) = xα+2(t), otherwise this would contradict the fact that r(xα+1(t)) = xα+2(t). Hence, x′

α+1(t)
and xα+2(t) are mutually chained (refer to Fig. 6). We now apply Lemma 4.10 on x′

α+1(t) and xα+2(t).

Since |xα+1(t) − yα+1(t)| t→∞−→ 0, then |xα+1(t) − x′
α+1(t)| 

t→∞−→ 0. The fact that xα+2(t) − xα+1(t) 
t→∞−→ V therefore im-

plies that xα+2(t) − x′
α+1(t) 

t→∞−→ V . By Lemma 4.10, x′
α+1(t) − l(x′

α+1(t)) 
t→∞−→ V and r(xα+2(t)) − xα+2(t) 

t→∞−→ V . We have 
l(x′

α+1(t)) = xα(t) = yα(t), otherwise this would contradict the fact that l(yα+1(t)) = xα(t) = yα(t). Therefore, the fact that 

x′
α+1(t) ∈ [yα+1(t), xα+1(t)], together with the fact that |xα+1(t) − yα+1(t)| t→∞−→ 0, imply that xα+1(t) − xα(t) t→∞−→ V . More-

over, since r(xα+2(t)) = xα+3(t), the fact that r(xα+2(t)) − xα+2(t) 
t→∞−→ V implies that xα+3(t) − xα+2(t) 

t→∞−→ V .

By the previous argument, the fact that xα+2(t) − xα+1(t) 
t→∞−→ V propagates to xα+1(t) − xα(t) and xα+3(t) − xα+2(t). 

We can repeat the same argument and show that this propagates to all xi ’s, from which we get that for all 0 ≤ i ≤ j, 
xi+1(t) − xi(t) 

t→∞−→ V . Therefore, the total distance between x0 = R0 and xn = Rn is arbitrarily close to ( j + 1)V . This 
contradicts the fact that xn − x0 = Rn − R0 = ( j + 1)V − δ for all t ≥ 0. �

In the proof of Theorem 4.9, we showed the existence of a unique mutual chain called the primary chain. Intuitively, we 
say that a configuration of robots is a secondary chain if it is a mutual chain anchored at two robots that belong to the 
primary chain. However, such a configuration is not necessarily unique (refer to Fig. 7 for an example). Level- j chains (for 
j > 2) are defined in a similar way.

Definition 4 (Secondary chains and level- j chains).

• The primary chain is called a level-1 chain.
• A configuration of robots C is a secondary chain if it is a mutual chain anchored at two robots x and y, such that 

x, y ∈ C1 and least one of x and y is non-faulty. We say that a secondary chain is a level-2 chain.
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• A configuration of robots C is a level- j chain if it is a mutual chain anchored at two robots x and y which satisfy the 
following property. There exists an index j′ < j such that one of the following two statements is true:
– x is part of a level- j′ chain and y is part of a level-( j − 1) chain
– or x is part of a level-( j − 1) chain and y is part of a level- j′ chain.

The convergence of the primary chain can be proven by observing that the behaviour of the robots in the primary 
chain executing our algorithm (Convergence1D) is equivalent to the behaviour they would have if they were executing 
Algorithm Spreading. Once this is established, convergence follows from Theorem 3.2. The following lemma shows under 
what conditions Theorem 3.2 can be applied to a general mutual chain Y (t) = {y1(t), y2(t), . . . , yk(t)}. More specifically, 
suppose that there exist two real numbers y′

0 and y′
k+1 such that y0(t) = l(y1(t)) 

t→∞−→ y′
0 and yk+1(t) = r(yk(t)) 

t→∞−→ y′
k+1. 

Then, by applying Algorithm Convergence1D, Y (t) converges towards an equidistant configuration between y′
0 and y′

k+1.

Lemma 4.11. Let Y (t) = {y1(t), y2(t), . . . , yk(t)} be a mutual chain at a size-stable time t, anchored in y0(t) = l(y1(t)) and 
yk+1(t) = r(yk(t)), where y0(t) 	= y1(t) and yk+1(t) 	= yk(t). Suppose that there exist two numbers y′

0 and y′
k+1 , such that 

y0(t) 
t→∞−→ y′

0 and yk+1(t) 
t→∞−→ y′

k+1 . We have that, for all 0 ≤ i ≤ k + 1,

yi(t)
t→∞−→ y′

0 + |y′
k+1 − y′

0|
k + 1

i.

Therefore, as t → ∞, the robots in {y1(t), y2(t), . . . , yk(t)} converge to a configuration where the distance between any two consec-

utive robots is 
|y′

k+1−y′
0|

k+1 .

Proof. Let Z(t) = {z0(t) = y0(t), z1(t), z2(t), . . . , zm(t) = yk+1(t)} ⊆ R(t) be the global configuration of robots at time t , 
restricted to the interval [y0(t), yk+1(t)].

By Theorem 4.8, Y (t) satisfies the following property: for all 1 ≤ i ≤ k and for all t′ ≥ t , we have that l(yi(t′)) = l(yi(t))
and r(yi(t′)) = r(yi(t)). Therefore, even if there is a robot z j(t) ∈ N(yi(t)) \ Y (t), the presence of z j(t) has no impact on 
the position of yi(t + 1). Consequently, the positions of the robots in Y (t + 1), after executing Algorithm Convergence1D on 
Y (t), are uniquely determined by the positions of the robots in Y (t). Hence, executing Algorithm Convergence1D on Y (t)
produces the same result as executing Algorithm Spreading on Y (t), and thus the lemma follows from Theorem 3.2. �

We now show that the primary chain C1 = {x0, x1, x2, ..., xk} ⊆ R, where x0 = R0 and xk = Rn , converges towards a 
configuration of equidistant robots delimited by its anchors R0 and Rn .

Theorem 4.12 (Convergence of the primary chain). Let C1 = {x0, x1, x2, ..., xk} be the primary chain. We have that x0 = R0 , xk = Rn

and for all 0 ≤ i ≤ k

xi(t)
t→∞−→ |Rn − R0|

k
i.

Proof. Since C1 is a mutual chain, the configuration {x1, x2, ..., xk−1} is also a mutual chain. It is anchored at x0 and xk , 
where x0 	= x1 and xk 	= xk−1. Since the anchors x0 = R0 = 0 and xk = Rn are faulty, they do not move. Hence, x0(t) 

t→∞−→
R0 = 0 and xk(t) 

t→∞−→ Rn . Thus, the theorem follows directly from Lemma 4.11. �
We now show that every level- j chain converges towards a configuration of equidistant robots.

Theorem 4.13 (Convergence of level- j chains). Let C j = {y1, y2, . . . , yk} be a level- j chain, where j ≥ 1 is an integer. Let t be a 
size-stable time. Let y0(t) = l(y1(t)) and yk+1(t) = r(yk(t)). There exist real numbers y′

0 and y′
k+1 such that y0(t) 

t→∞−→ y′
0 and 

yk+1(t) 
t→∞−→ y′

k+1 . Moreover, for all 0 ≤ i ≤ k + 1,

yi(t)
t→∞−→ y′

0 + |y′
k+1 − y′

0|
k + 1

i.

Proof. We proceed by induction on j. By Definition 4, a level-1 chain is a primary chain. Therefore, by Theorem 4.12, our 
statement is true for j = 1. Suppose that the theorem is true for all integers from 1 to j − 1. Consider a level- j chain 
C j = {y1, y2, . . . , yk} anchored at y0(t) = l(y1(t)) and yk+1(t) = r(yk(t)), where t is a size-stable time.

By Definition 4, there exists an index j′ < j such that one of the following two statements is true:

• y0 is part of a level- j′ chain and yk+1 is part of a level-( j − 1) chain
• or y0 is part of a level-( j − 1) chain and yk+1 is part of a level- j′ chain.
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Fig. 8. Illustration of the proof of Lemma 4.14.

Without loss of generality, suppose that y0 is part of a level- j′ chain and yk+1 is part of a level-( j − 1) chain.

By the induction hypothesis, there exist two real numbers y′
0 and y′

k+1 such that y0(t) 
t→∞−→ y′

0 and yk+1(t) 
t→∞−→ yk+1. 

The theorem follows from Lemma 4.11. �
The following lemma states that every robot belongs to some level- j chain. To simplify the presentation, we assume that 

the faulty robot x0 is part of the level-0 chain {x0} and that the faulty robot xn is part of the level-0 chain {xn}.

Lemma 4.14. For all size-stable time t and all 0 ≤ i ≤ n, there exists an integer j ≥ 0 such that Ri(t) ∈R(t) belongs to a level- j chain.

Proof. Suppose that the statement is false. Let y1(t) be the leftmost robot that does not belong to any level- j chain. 
Therefore, l(y1(t)) belongs to a level- j′ chain (for some j′ ≥ 0), say C(t) = {x1, x2, ..., xm}, where l(y1(t)) = xα(t) for some 
index 1 ≤ α ≤ m. Since y1(t) does not belong to any level- j chain, r(y1(t)) does not belong to any level- j chain. Otherwise, 
by definition, {y1(t)} would be a level- j′′ chain for some j′′ ≥ j′ . Therefore, assume that r(y1(t)) does not belong to any 
level- j chain.

Let Y = {y1, y2, ..., yk} be the configuration of robots such that (refer to Fig. 8)

1. yi(t) = r(yi−1(t)), where 2 ≤ i ≤ k,
2. for all 1 ≤ i ≤ k, yi(t) does not belong to any level- j chain
3. and r(yk(t)) belongs to a level- j′′ chain (for some j′′ ≥ j′).

Observe that Y is well-defined. Indeed, by the previous discussion, k ≥ 2. Moreover, by construction, {y1(t), y2(t), ..., yk(t)}
is not a mutual chain.

Let {z1, z2, ..., zk} be the configuration of robots such that zk = yk and zi(t) = l(zi+1(t)) for all 1 ≤ i ≤ k − 1. Using 
the same arguments as in the proof of Theorem 4.9, we get that xα ≤ z1 ≤ y1 and yi−1 < zi ≤ yi for all 2 ≤ i ≤ k. Since 
{y1(t), y2(t), ..., yk(t)} is not a level- j chain for any j ≥ 0, there is an index 1 ≤ i ≤ k such that zi(t) 	= yi(t). Let β be the 
smallest index such that zβ = yβ and zβ−1 	= yβ−1.

We claim that zi(t) 	= yi(t) for all 1 ≤ i < β −1. We prove this claim by contradiction. Assume there is an index γ < β −1
such that zγ (t) = yγ (t). Therefore, by the definition of β , zi = yi for all 1 ≤ i ≤ γ . Moreover, xα = l(y1) and r(yk) are part 
of level- j chains. Therefore, by Theorems 4.12 and 4.13, xα(t) = l(y1(t)) and r(yk)(t) converge to a fixed location as t → ∞. 
Consequently, when we consider the configurations {y1, y2, ..., yk} and {z1, z2, ..., zk}, we get the same contradiction as in 
the proof of Theorem 4.9. This proves our claim.

We have the following property.

Property 1 If, for all 2 ≤ i ≤ β − 1, zi(t) does not belong to any level- j chain, then z1(t) = l(z2(t)) belongs to a level- j
chain. Indeed, we must have z1(t) ≤ y1(t) otherwise this would contradict the fact that y2(t) = r(y1(t)). Moreover, 
we assumed that zi(t) 	= yi(t) for all 1 ≤ i < β − 1. Hence, z1(t) < y1(t). Moreover, we must have z1(t) ≥ xα(t)
otherwise this would contradict the fact that xα(t) = l(y1(t)). But then, since y1(t) is the leftmost robot that does 
not belong to any level- j chain, we must have that z1(t) = l(z2(t)) belongs to a level- j chain.

Consequently, there is an index 1 ≤ i ≤ β −1 such that zi(t) belongs to a level- j chain. Let 1 ≤ μ ≤ β −1 be the largest index 
such that zμ(t) belongs to a level- j chain, say W = {w1, w2, ..., wm′ }. Let 1 ≤ ν ≤ m′ be the index such that wν(t) = zμ(t).

We have the following property.

Property 2 zμ+1(t) < wν+1(t) < yμ+1(t). Indeed, observe that wν+1(t) = r(wν(t)). Therefore, wν+1(t) ≤ yμ+1(t), other-
wise this would contradict the fact that yμ+1(t) = r(yμ(t)). Moreover, by definition, wν+1(t) 	= yμ+1(t). We also 
have that wν+1(t) ≥ zμ+1(t) otherwise this would contradict the fact that zμ(t) = l(zμ+1(t)). Moreover, by defini-
tion, wν+1(t) 	= zμ+1(t).

By repeating the argument for proving Property 2, we reach the index ν ′ such that zβ−1(t) < wν ′ (t) < yβ−1(t). Observe that 
wν ′+1(t) = r(wν ′ (t)) ≤ yβ(t), otherwise this would contradict the fact yβ(t) = r(yβ−1(t)). Moreover, wν ′+1(t) ≥ yβ(t) =
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zβ(t), otherwise this would contradict the fact zβ−1(t) = l(zβ(t)). Therefore, wν ′+1(t) = yβ(t). However, by the definition of 
Y , yβ(t) is not part of any level- j chain. We get a contradiction. �

The following theorem follows directly from Theorems 4.12 and 4.13, and Lemma 4.14.

Theorem 4.15 (Global convergence). For all 0 ≤ i ≤ n, there exists a real number R∗
i such that Ri(t) 

t→∞−→ R∗
i . Therefore, R(t) converges 

towards a fixed configuration R∗ = {R∗
0, R

∗
1, ..., R

∗
n} as t → ∞. The configuration R∗ contains a primary chain C1 anchored at R0 and 

Rn. Additionally, there is an integer κ ≥ 1 such that for all 0 ≤ i ≤ n, R∗
i belongs to a level- j chain, for some 1 ≤ j ≤ κ . Moreover, every 

level- j chain in R∗ is a mutual chain of equidistant robots.

5. Conclusion

To study the impact of faults on the robots dynamics, in this paper we analyzed the behaviour of a group of oblivious 
robots which execute an algorithm designed for a fault-free environment in presence of undetectable crash faults. We 
focused on the classic point-convergence algorithm by Ando et al. [2] executed on a line, when the robots are synchronous 
and at most two of them are faulty.

The paper leaves several open questions and research directions.
An obvious extension would be the study of the point-convergence algorithm in the case of more than two faults. Extensive 

simulation indicates that the robots still converge to some more complex combination of mutual chains. However, several 
situations can occur depending on the location of the faulty robots, on their relative distance, as well as on their number. 
The characterization of the family of fixed points is far from simple and it is left for further study.

The study of this system under a semi-synchronous scheduler (Ssync) would be quite interesting. In Ssync, an arbitrary 
subset of the robots is activated at each round. The choice is made by an adversary, which has only to insure that every 
robot is activated infinitely often (i.e., that no robot is left inactive for ever after any given time). The analysis of the long 
term behaviour of the system under Ssync is quite complicated and it is not even clear whether the system converges or 
not. One of the challenges is that the inactivity of a robot behaves as a fault, for an arbitrary amount of time, and a clever 
activation pattern chosen by the adversary might make the system oscillate between different configurations. A study of 
this setting is left as future work.

Finally, we know that when the robots operate fully synchronously in a two dimensional space (i.e., in the plane), their 
dynamics has a rather different nature. In fact, they seem to converge in most cases, but it can be shown that some 
executions lead to an oscillating behaviour. The study of this case is undergoing.

More generally, this work can be seen as a first step toward the study of the interaction between heterogeneous groups 
of robots operating in the same space, each following a different algorithm. The existing literature on Look-Compute-Move

robots has always considered robots with the same set of rules. The presence of different teams following different, possibly 
conflicting, rules in the environment is an interesting new area of investigation.
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Appendix A. Proof of Lemma 3.3

In this section, we provide a complete and detailed proof of Lemma 3.3.

Proof. By the hypothesis, the lemma is true for i = 0 and i = m. If m = 2, by the hypothesis,

|η1(t + 1)| =
∣∣∣∣η0(t) + η2(t)

2

∣∣∣∣ ≤ |η0(t)| + |η2(t)|
2

t→∞−→ 0.

Hence, assume that m ≥ 3. To deal with other values of i, let

ψ(t) =
m∑

i=0

η2
i (t).

We show that ψ(t) t→∞−→ 0, which completes the proof. Following the same approach as the one used in the proof of 
Theorem 3.1, we use the Fourier sine series of ηi(t). However, in our case, we need to be careful since η0(t) and ηm(t) are 
not necessarily equal to 0. For all 0 ≤ i ≤ m, 0 ≤ k ≤ m and t ≥ 0, let

g(i,k) =
√

2

m
sin

(
kiπ

m

)
and μk(t) =

m∑
ηi(t)g(i,k).
i=0
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We have

ηi(t) =
m∑

k=0

μk(t)g(i,k) (A.1)

for all 1 ≤ i ≤ m − 1 and t ≥ 0. Moreover, we have

g(i,0) = g(i,m) = g(0,k) = g(m,k) = 0 (A.2)

for all 0 ≤ i ≤ m and 0 ≤ k ≤ m, from which

m∑
k=0

μk(t)g(0,k) =
m∑

k=0

μk(t)g(m,k) = 0.

Observe that for all 0 ≤ k ≤ m and 0 ≤ q ≤ m,

m∑
i=0

g(i,k)g(i,q) =
{

0 if k = 0, k = m, q = 0 or q = m

δk,q otherwise,
(A.3)

where δk,q stands for the Kronecker’s delta, i.e., δk,q = 1 if k = q and 0 otherwise. Moreover, observe that for all 0 ≤ k ≤ m
and t ≥ 0,

|μk(t)| =
∣∣∣∣∣

m∑
i=0

ηi(t)g(i,k)

∣∣∣∣∣ =
∣∣∣∣∣
m−1∑
i=1

ηi(t)g(i,k)

∣∣∣∣∣ ≤
m−1∑
i=1

|ηi(t)g(i,k)| ≤ (m − 1)

√
2

m
M ≤ √

2mM. (A.4)

We also have

ψ(t) =
m∑

i=0

η2
i (t)

= η2
0(t) + η2

m(t) +
m−1∑
i=1

η2
i (t)

= η2
0(t) + η2

m(t) +
m−1∑
i=1

(
m∑

k=0

μk(t)g(i,k)

)2

by (A.1),

= η2
0(t) + η2

m(t) +
m∑

i=0

(
m∑

k=0

μk(t)g(i,k)

)2

by (A.2),

= η2
0(t) + η2

m(t) +
m∑

i=0

(
m∑

k=0

√
2

m
μk(t) sin

(
kiπ

m

))2
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m
μk(t) sin

(
kiπ

m

))(√
2

m
μq(t) sin

(
qiπ

m

))
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μk(t)μq(t)
m∑
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(
kiπ

m

))(√
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(
qiπ
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m(t) +
m∑
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m∑
q=0

μk(t)μq(t)
m∑
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g(i,k)g(i,q)

= η2
0(t) + η2

m(t) +
m∑

k=0

m∑
q=0

μk(t)μq(t)δk,q by (A.3) and since μ0(t) = μm(t) = 0,

= η2
0(t) + η2

m(t) +
m−1∑
k=1

μ2
k (t) since μ0(t) = μm(t) = 0. (A.5)
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Moreover, for 1 ≤ k ≤ m − 1 (since μ0(t + 1) = μm(t + 1) = 0), we have

μk(t + 1)

=
m∑

i=0

√
2

m
sin

(
kiπ
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)
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√
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2
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)
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)
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(
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)
ηm(t) +

m∑
i=0

1

2

√
2

m
sin

(
k(i + 1)π

m

)
ηi(t)

− 1

2

√
2

m
sin

(−kπ

m

)
η0(t) +

m∑
i=0

1

2

√
2

m
sin

(
k(i − 1)π

m

)
ηi(t)

= 1

2

√
2

m
sin

(
kπ

m

)
ηm(t) + 1

2

√
2

m
sin

(
kπ

m

)
η0(t)

+
m∑

i=0

1

2

√
2

m
sin

(
k(i + 1)π

m

)
ηi(t) +

m∑
i=0

1

2

√
2

m
sin

(
k(i − 1)π

m

)
ηi(t)

= 1

2

√
2

m
sin

(
kπ

m

)
(η0(t) + ηm(t)) + 1

2

√
2

m

m∑
i=0

(
sin

(
k(i + 1)π

m

)
+ sin

(
k(i − 1)π

m

))
ηi(t)

= 1

2

√
2

m
sin

(
kπ

m

)
(η0(t) + ηm(t)) +

√
2

m

m∑
i=0

sin

(
kiπ

m

)
cos

(
kπ

m

)
ηi(t)

= 1

2

√
2

m
sin

(
kπ

m

)
(η0(t) + ηm(t)) + cos

(
kπ

m

)
μk(t)

≤ |η0(t)| + |ηm(t)| + cos

(
kπ

m

)
μk(t) (A.6)

Therefore, since μ0(t + 1) = μm(t + 1) = 0,

ψ(t + 1)

= η2
0(t + 1) + η2

m(t + 1) +
m∑

k=0

μ2
k (t + 1)

= η2
0(t + 1) + η2

m(t + 1) +
m−1∑
k=1

μ2
k (t + 1)

≤ η2
0(t + 1) + η2

m(t + 1) +
m−1∑
k=1

(
|η0(t)| + |ηm(t)| + cos

(
kπ

m

)
μk(t)

)2

by (A.6),

= η2
0(t + 1) + η2

m(t + 1)

+
m−1∑ (

(|η0(t)| + |ηm(t)|)2 + 2 (|η0(t)| + |ηm(t)|) cos

(
kπ

m

)
μk(t) + cos2

(
kπ

m

)
μ2

k (t)

)

k=1
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= η2
0(t + 1) + η2

m(t + 1) +
m−1∑
k=1

(|η0(t)| + |ηm(t)|)2

+
m−1∑
k=1

2 (|η0(t)| + |ηm(t)|) cos

(
kπ

m

)
μk(t) +
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k=1
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≤ η2
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m(t + 1) + (m − 1) (|η0(t)| + |ηm(t)|)2

+ 2 (|η0(t)| + |ηm(t)|) cos
(π

m

)m−1∑
k=1

μk(t) + cos2
(π

m

)m−1∑
k=1

μ2
k (t)

≤ η2
0(t + 1) + η2

m(t + 1) + (m − 1) (|η0(t)| + |ηm(t)|)2 + 2 (|η0(t)| + |ηm(t)|) cos
(π

m

)
(m − 1)

√
2mM

+ cos2
(π

m

)(
ψ(t) − η2

0(t) − η2
m(t)

)
by (A.4) and (A.5),

≤ η2
0(t + 1) + η2

m(t + 1) + (m − 1) (|η0(t)| + |ηm(t)|)2

+ 2 (|η0(t)| + |ηm(t)|) (m − 1)
√

2mM + cos2
(π

m

)
ψ(t). (A.7)

Since η0(t) 
t→∞−→ 0 and ηm(t) t→∞−→ 0, there exists a positive function ε(t) such that ε(t) t→∞−→ 0, ε(t) = O (1) and for all 

t ≥ 0, we have |η0(t)| ≤ ε(t), |η0(t + 1)| ≤ ε(t), |ηm(t)| ≤ ε(t) and |ηm(t + 1)| ≤ ε(t). Therefore, the right-hand side of 
inequality (A.7) is upper bounded by

ε2(t) + ε2(t) + 4(m − 1)ε2(t) + 4ε(t)(m − 1)
√

2mM + cos2
(π

m

)
ψ(t)

≤
(

2ε(t) + 4(m − 1)ε(t) + 4(m − 1)
√

2mM
)
ε(t) + cos2

(π

m

)
ψ(t)

≤ φ ε(t) + λψ(t),

where φ = 2ε(t) + 4(m − 1)ε(t) + 4(m − 1)
√

2mM = O (1) and λ = cos2
(
π
m

) ≤ cos2
(
π
3

) = 1
4 .

Consequently, by unfolding (A.7) t times, we get

ψ(t) ≤
(

1 + λ + λ2 + ... + λt−1
)

φ ε(t) + λtψ(0)

= 1 − λt

1 − λ
φ ε(t) + λtψ(0)

t→∞−→ 0. �
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