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Abstract

The gathering (or multi-agent rendezvous) problem requires a set of mobile agents,
arbitrarily positioned at different nodes of a network to group within finite time at the same
location, not fixed in advanced.

The extensive existing literature on this problem shares the same fundamental assumption:
the topological structure does not change during the rendezvous or the gathering; this is true
also for those investigations that consider faulty nodes. In other words, they only consider
static graphs.

In this paper we start the investigation of gathering in dynamic graphs, that is networks
where the topology changes continuously and at unpredictable locations.

We study the feasibility of gathering mobile agents, identical and without explicit com-
munication capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we
consider is the classic 1-interval-connectivity. We focus on the impact that factors such as
chirality (i.e., a common sense of orientation) and cross detection (i.e., the ability to detect,
when traversing an edge, whether some agent is traversing it in the other direction), have on
the solvability of the problem; and we establish several results.

We provide a complete characterization of the classes of initial configurations from which
the gathering problem is solvable in presence and in absence of cross detection and of chirality.
The feasibility results of the characterization are all constructive: we provide distributed
algorithms that allow the agents to gather within low polynomial time. In particular, the
protocols for gathering with cross detection are time optimal.

We also show that cross detection is a powerful computational element. We prove that,
without chirality, knowledge of the ring size is strictly more powerful than knowledge of the
number of agents; on the other hand, with chirality, knowledge of n can be substituted by
knowledge of k, yielding the same classes of feasible initial configurations.

From our investigation it follows that, for the gathering problem, the computational
obstacles created by the dynamic nature of the ring can be overcome by the presence of
chirality or of cross-detection.
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1 Introduction

1.1 Background and Problem

The gathering problem requires a set of k mobile computational entities, dispersed at different
locations in the spacial universe they inhabit, to group within finite time at the same location,
not fixed in advanced. This problem models many situations that arise in the real world, e.g.,
searching for or regrouping animals, people, equipment, and vehicles,

This problem, known also as multi-agent rendezvous, has been intesively and extensively
studied in a variety of fields, including operations research (e.g., [1]) and control (e.g., [41]), the
original focus being on the rendezvous problem, i.e. the special case k = 2.

In distributed computing, this problem has been extensively studied both in continuous and
in discrete domains. In the continuous case, both the gathering and the rendevous problems
have been investigated in the context of swarms of autonomous mobile robots operating in one-
and two-dimensional spaces, requiring them to meet at (or converge to) the same point (e.g.,
see [11,12,17,27,28,43]).

In the discrete case, the mobile entities, usually called agents, are dispersed in a network
modeled as a graph and are required to gather at the same node (or at the two sides of the same
edge) and terminate (e.g., see [2, 18,19,24,25,32,35–37,46,47]). The main obstacle for solving
the problem is symmetry, which can occur at several levels (topological structure, nodes, agents,
communication), each playing a key role in the difficulty of the problem and of its resolution.
For example, when the network nodes are uniquely numbered, solving the gathering problem is
trivial. On the other hand, when the network nodes are anonymous, the network topology is
highly symmetric, the mobile agents are identical, and there is no means of communication, the
problem is clearly impossible to solve by deterministic means. The quest has been for minimal
empowering assuptions which would make the problems deterministically solvable.

A very common assumption is for the agents to have distinct identities (e.g., see [13,18,19,47]).
This enables different agents to execute different deterministic algorithms; under such an
assumption, the problem becomes solvable, and the focus is on the complexity of the solution.

An alternative type of assumption consists in empowering the agents with some minimal
form of explicit communication. In one approach, this is achieved by having a whiteboard at
each node giving the agents the ability to leave notes in each node they travel (e.g., [2, 9,24]);
in this case, some form of gathering can occur even in presence of some faults [9, 24]. A less
explicit and more primitive form of communication is by endowing each agent with a constant
number of movable tokens, i.e. pebbles that can be placed on nodes, picked up, and carried
while moving (e.g., [14]).

The less demanding assumption is that of having the homebases (i.e., the nodes where the
agents are initially located) identifiable by a mark, identical for all homebases, and visible
to any agent passing by it. This setting is clearly much less demanding that agents having
identities or explicit communication; originally suggested in [3], it has been used and studied
e.g., in [25,37,45].

Summarizing, the existing literature on the gathering and rendezvous problems is extensive
and the variety of assumptions and results is aboundant (for surveys see [36, 44]). However,
regardless of their differences, all these investigations share the same fundamental assumption
that the topological structure does not change during the rendezvous or the gathering; this is
true also for those investigations that consider faulty nodes (e.g., see [6, 9, 24]). In other words,
they only consider static graphs.

Recently, within distributed computing, researchers started to investigate dynamic graphs,
that is graphs where the topological changes are not localized and sporadic; on the contrary,
the topology changes continuously and at unpredictable locations, and these changes are not
anomalies (e.g., faults) but rather integral part of the nature of the system [8,40].

The study of distributed computations in highly dynamic graphs has concentrated on problems
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of information diffusion, reachability, agreement, and exploration (e.g., [4, 5, 7, 29–31,38,39]).
In this paper we start the investigation of gathering in dynamic graphs by studying the

feasibility of this problem in dynamic rings. Note that rendezvous and gathering in a ring,
the prototypical symmetric graph, have been intesively studied in the static case (e.g., see the
monograph on the subject [36]). The presence, in the static case, of a mobile faulty agent that
can block other agents, considered in [15, 16], could be seen as inducing a particular form of
dynamics. Other than that, nothing is known on gathering in dynamic rings.

1.2 Main Contributions

In this paper, we study gathering of k agents, identical and without communication capabilities,
in a dynamic ring of n anonymous nodes with identically marked homebases. The class of
dynamics we consider is the classic 1-interval-connectivity (e.g., [22, 29, 38, 39]); that is, the
system is fully synchronous and under a (possibly unfair) adversarial schedule that, at each time
unit, chooses which edge (if any) will be missing. Notice that this setting is not reducible to the
one considered in [15,16].

In this setting, we investigate under what conditions the gathering problem is solvable. In
particular, we focus on the impact that factors such as chirality (i.e., common sense of orientation)
and cross detection (i.e., the ability to detect, when traversing an edge, whether some agent is
traversing it in the other direction), have on the solvability of the problem. Since, as we prove,
gathering at a single node cannot be guaranteed in a dynamic ring, we allow gathering to occur
either at the same node, or at the two end nodes of the same link.

A main result of our investigation is the complete characterization of the classes F(X,Y )
of initial configurations from which the gathering problem is solvable with respect to chirality
(X ∈ {chirality,¬chirality}) and cross detection (Y ∈ {detection,¬detection}).

In obtaining this characterization, we establish several interesting results. For example, we
show that, without chirality, cross detection is a powerful computational element; in fact, we
prove (Theorems 1 and 5):

F(¬chirality,¬detection) ( F(¬chirality, detection)

Furthermore, in such systems knowledge of the ring size n cannot be substituted by knowledge
of the number of agents k (at least one of n and k must be known for gathering to be possible);
in fact, we prove that with cross detection but without chirality, knowledge of n is strictly more
powerful than knowledge of k.

On the other hand, we show that, with chirality, knowledge of n can be substituted by
knowledge of k, yielding the same classes of feasible initial configurations. Furthermore, with
chirality, cross detection is no longer a computational separator; in fact (Theorems 3 and 4)

F(chirality,¬detection) = F(chirality, detection)

We also observe that

Fstatic = F(chirality, ∗) = F(¬chirality, detection)

where Fstatic denotes the set of initial configurations from which gathering is possible in the
static case. In other words: with chirality or with cross detection, it is possible to overcome the
computational obstacles created by the highly dynamic nature of the system.

All the feasibility results of this characterization are constructive: for each situation, we
provide a distributed algorithm that allows the agents to gather within low polynomial time.
In particular, the protocols for gathering with cross detection, terminating in O(n) time, are
time optimal. Moreover, our algorithms are effective; that is, starting from any arbitrary
configuration C in a ring conditions X and Y , within finite time the agents determine whether
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or not C ∈ F(X,Y ) is feasible, and gather if it is. See Figure 1 for a summary of some of the
results and the sections where they are established.

no chirality chirality

cross detection

feasible: C \ P feasible: C \ P
time: O(n) time: O(n)
(Sec. 4.1) (Sec. 4.3)

no cross detection

feasible: C \ (P ∪ E) feasible: C \ P
time: O(n2) time: O(n log n)
(Sec. 5.2) (Sec. 5.1)

Figure 1: Each entry (X,Y ) shows the set F(X,Y ) of feasible configurations, and the time complexity of
the gathering algorithm, where: X ∈ {chirality,¬chirality}; Y ∈ {detection,¬detection}; and C,
P and E are the set of all possible configurations, of the periodic configurations, and of the configurations
with an unique symmetry axis passing through edges of the ring, respectively.

2 Model and Basic Limitations

2.1 Model and Terminology

Let R = (v0, . . . vn−1) be a synchronous dynamic ring where, at any time step t ∈ N , one of
its edges might not be present; the choice of which edge is missing (if any) is controlled by an
adversarial scheduler, not restricted by fairness assumptions. Such a dynamic network is known
in the literature as a 1-interval connected ring.

Each node vi is connected to its two neighbours vi−1 and vi+1 via distinctly labeled ports
qi− and qi+, respectively (all operations on the indices are modulo n); the labeling of the ports
is arbitrary and thus might not provide a globally consistent orientation. Each port of vi has
an incoming buffer and an outgoing buffer. Finally, the nodes are anonymous (i.e., have no
distinguished identifiers).

Agents. Operating in R is a set A = {a0, . . . , ak−1} of computational entities, called agents,
each provided with memory and computational capabilities. The agents are anonymous (i.e.,
without distinguishing identifiers) and all execute the same protocol.

When in a node v, an agent can be at v or in one of the port buffers. Any number of agents
can be in a node at the same time; an agent can determine how many other agents are in its
location and where (in incoming buffer, in outgoing buffer, at the node). Initially the agents are
located at distinct locations, called homebases; nodes that are homebases are specially marked
so that each agent can determine whether or not the current node is a homebase. Note that, as
discussed later, this assumption is necessary in our setting.

Each agent aj has a consistent private orientation λj of the ring which designates each port
either left or right, with λj(qi−) = λj(qk−), for all 0 ≤ i, k < n. The orientation of the agents
might not be the same. If all agents agree on the orientation, we say that there is chirality.

The agents are silent: they not have any explicit communication mechanism.
The agents are mobile, that is they can move from node to neighboring node. More than one

agent may move on the same edge in the same direction in the same round.
We say that the system has cross detection if whenever two or more agents move in opposite

directions on the same edge in the same round, the involved agents detect this event; however
they do not necessarily know the number of the involved agents in either direction.

Synchrony and Behavior. The system operates in synchronous time steps, called rounds.
In each round, every agent is in one of a finite set of system states S which includes two special
states: the initial state Init and the terminal state Term.
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At the beginning of a round r, an agent a in v executes its protocol (the same for all
agents). Based on the number of agents at v and in its buffers, and on the content of its local
memory and its state, it determines whether or not to move and, if so, in which direction
(direction ∈ {left, right, nil}).

If direction = nil, the agent places itself at v (if currently on a port). If direction 6= nil, the
agent moves in the outgoing buffer of the corresponding port (if not already there); if the link is
present, it arrives in the incoming buffer of the corresponding port of the destination node in
round r + 1; otherwise the agent does not leave the outgoing buffer. As a consequence, an agent
can be in an outgoing buffer at the beginning of a round only when the corresponding link is
not present.

In the following, when an agents is in an outgoing buffer that leads to the missing edge, we
will say that the agent is blocked.

When multiple agents are at the same node, all of them have the same direction of movement,
and are in the same state, we say that they form a group.

Problem Definition. Let (R,A) denote a system so defined. In (R,A), gathering is achieved
in round r if all agents in A are on the same node or on two neighbouring nodes in r; in the first
case, gathering is said to be strict.

An algorithm solves Gathering if, starting from any configuration from which gathering is
possible, within finite time all agents are in the terminal state, are gathered, and are aware that
gathering has been achieved.

A solution algorithm is effective if starting from any configuration from which gathering is
not possible, within finite time all agents detect such impossibility.

2.2 Configurations and Elections

The locations of the k home bases in the ring is called a configuration. Let C be the set of all
possible configurations with k agents. Let h0, . . . , hk−1 denote the nodes corresponding to the
marked homebases (in a clockwise order) in C ∈ C. We shall indicate by di (0 ≤ i ≤ k − 1) the
distance (i.e., number of edges) between hi and hi+1 (all operations are modulo k). Let δ+j

denote the inter-distance sequence clockwise δ+j =< dj , dj+1 . . . dj+k−1 >, and let δ−j denote
the couter-clockwise sequence δ−j =< dj−1 . . . dj−(k−1) >. The unordered pair of inter-distance
sequences δ+j and δ−j describes the configuration from the point of view of node hj .

A configuration is periodic with period p (with p|k) if δi = δi+p for all i = 0, . . . k − 1. Let P
denote the set of periodic configurations.

Let ∆+ = {δ+j : 0 ≤ j < k − 1} and ∆− = {δ−j : 0 ≤ j < k − 1}. We will denote by
δmin the ascending lexicographically minimum sequence in ∆+ ∪∆−. Among the non-periodic
configurations, particular ones are the double-palindrome configurations, where δmin = δ+i = δ−j

with i 6= j, where it is easy to see that the two sequences between the corresponding home
bases hi and hj are both palindrome. A double-palindrome configuration has thus a unique axis
of symmetry, equidistant from hi and hj . If such an axis passes through two edges (i.e., the
distances between hi and hj are both odd), we say that the configuration is edge-edge, and we
denote by E the set of edge-edge configurations.

For example, let k = 4 and h0, h1, h2, h3 be the four home bases with d0 = 3, d1 = 4, d2 = 5,
d3 = 4. In this case we have δmin = δ+0 = δ−1 =< 3, 4, 5, 4 > and the unique axis of symmetry
passes through two edges (one half-way between h0 and h1, the other half-way between h2 and
h3).

A characterization of the configurations where a leader can be elected depending on chirality
is well known in static rings.
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Property 1. In a static ring without chirality, a leader node can be elected from configuration
C if and only if C ∈ C \ (P ∪ E); a leader edge can be elected if and only if C ∈ C \ P.
With chirality, a leader node can be elected if and only if C ∈ C \ P.

Consider a ring without chirality. The canonical way to elect a leader from configuration
C ∈ C \ (P ∪ E) is described below. If C is asymmetric, the leader is the unique homebase that
starts the lexicographically smallest inter-distance sequence. If C is double-palindrome, let h
and h′ be the two homebases that start (in opposite direction) the two identical lexicographically
smallest sequences: if C ∈ E the leader edge is the edge in the middle of the shortest portion of
the ring delimited by h and h′ (note that both portions have odd distance and there is a central
edge); otherwise (C /∈ E) at least one of the two portions of the ring between h and h′ has even
distance and a central node is identified as the leader.

2.3 Basic Limitations and Properties

Observe that, in our setting, it is necessary for the homebases to be distingushable from the
other nodes.

Property 2. If the homebases are not distinguishable from the other nodes, then Gathering
is unsolvable in (R,A); this holds regardless of chirality, cross detection, and knowledge of k
and n.

Proof. Let the homebases be not distinguishable from the other nodes in (R,A). To prove the
property, it is sufficient to consider an execution in which all the entities have the same chirality
and no link ever disappears. Because of anonymity of the nodes and of the agents, and since
homebases are not marked as such, in each round all agents will perform exactly the same action
(i.e., stay still or move in the same direction). Thus the distance between neighbouring agents
will never change, and hence gathering will never take place if k > 2. For k = 2, by choosing the
initial distance between the two agents to be grater than one, the same argument leads to the
same result.

Thus, in the following we assume that the homebases are identical but distinguishable from the
other nodes.

An obvious, very basic limitation that holds even if the ring is static is the following.

Property 3. In (R,A), if neither n nor k are known, then Gathering is unsolvable; this holds
regardless of chirality and cross detection.

Hence at least one of n or k must be known.
An important limitation follows from the dynamic nature of the system:

Property 4. In (R,A), strict Gathering is unsolvable; this holds regardless of chirality, cross
detection, and knowledge of k and n.

Proof. Consider the following strategy of the adversarial scheduler. It selects two arbitrary
agents, a and b; at each round, the adversary will not remove any edge, unless the two agents
would meet in the next step. More precisely, if the two agents would meet by both independently
moving on different edges e′ and e′′ leading to the same vertex, then the adversary removes one
of the two edges; if instead one agent is not moving from its current node v, while the other is
moving on an edge e incident to v, the adversary removes edge e. This strategy ensures that a
and b will never be at the same node at the same time.

Hence, in the following we will not require gathering to be strict.
An obvious but important limitation, inherent to the nature of the problem, holds even in

static situations:
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Property 5. Gathering is unsolvable if the initial configuration C ∈ P; this holds regardless
of chirality, cross detection, and knowledge of k and n.

Proof. It is sufficient to consider an execution in which all the entities have the same chirality
and no link ever disappears. Depending on their initial positions, the agents can be partitioned
into k/p congruent classes, where p is the period of the initial configuration, each composed
of p agents. In each round, all agents of the same class will perform exactly the same action
(i.e., stay still or move in the same direction) based on the same observation. Thus the distance
between two consecutive agents of the same class will never change; hence gathering will never
take place.

Hence, in the following we will focus on initial configurations not in P.

3 General Solution Stucture

The solution algorithms for gathering have the same general structure, and use the same building
block and variables.

General Structure. All the algorithms are divided in two phases. The goal of Phase 1 is
for the agents to explore the ring. In doing so, they may happen to solve Gathering as well.
If they complete Phase 1 without gathering, the agents are able to elect a node or an edge
(depending on the specific situation) and the algorithm proceeds to Phase 2. In Phase 2 the
agents try to gather around the elected node (or edge); however, gathering on that node (or
edge) might not be possible due to the fact that the agents cannot count on the presence of all
edges at all times. Different strategies are devised, depending on the setting, to guarantee that
in finite time the problem is solved in spite of the choice of schedule of missing links decided by
the adversary. For each setting, we will describe the two phases depending on the availability or
lack of cross detection, as well as on the presence or not of chirality. Intuitively, cross detection
is useful to simplify termination in Phase 2, chirality helps in breaking symmetries.

Exploration Building Block. At each round, an agent evaluates a set of predicates: de-
pending on the result of this evaluation, it chooses a direction of movement and possibly a new
state. In its most general form, the evaluation of the predicates occurs through the building
block procedure Explore (dir | p1 : s1; p2 : s2; . . . ; ph : sh), where dir is either left or right ,
pi is a predicate, and si is a state. In Procedure Explore, the agent evaluates the predicates
p1, . . . , ph in order; as soon as a predicate is satisfied, say pi, the procedure exits and the agent
does a transition to the specified state, say si. If no predicate is satisfied, the agent tries to
move in the specified direction dir and the procedure is executed again in the next round. In
particular, the following predicates are used:

• meeting , satisfied when the agent (either in a port or at a node) detects an increase in the
numbers of agents it sees at each round.

• meetingSameDir, satisfied when the agent detects, in the current round, new agents moving
in its same direction. This is done by seeing new agents in an incoming or outgoing buffer
corresponding to a direction that is equal to the current direction of the agent.

• meetingOppositeDir, satisfied when the agent detects, in the current round, new agents
moving in its opposite direction. This is done by seeing new agents in an incoming or
outgoing buffer corresponding to a direction that is opposite to the current direction of
the agent.
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• crossed, satisfied when the agent, while traversing a link, detects in the current round
other agent(s) moving on the same link in the opposite direction.

• seeElected: let us assume there is either an elected node or an elected edge. This predicate
is satisfied when the agent has reached the elected node or an endpoint of the elected edge.

Furthermore, the agents keeps six variables during the execution of the algorithm. Two of
them are never reset during the execution; namely:

• Ttime: the total number of rounds since the beginning of the execution of the algorithm
(initially set to 0);

• TotalAgents: the number of total agents (initially set to 0). This variable will be set only
after the agent completes a whole loop of the ring, and will be equal to k.

Other four variables are periodically reset; in particular:

• rms: it stores the last round when the agent meets someone (at a node) that is moving in
the same direction (initially set to 0); this value is updated each time a new agent is met,
and it is reset at each change of state or direction of movement;

• Btime: the number of rounds the executing agent has been blocked trying to traverse a
missing edge since rms. This variable is reset to 0 each time the agent either traverses an
edge or changes direction to traverse a new edge;

• Etime, Esteps: the total number of rounds and edge traversals, respectively. These values
are reset at each new call of procedure Explore or when rms is set.

• Agents: the number of agents at the node of the executing agent. This value is set at each
round.

4 Gathering With Cross Detection

In this section, we study gathering in dynamic rings when there is cross detection; that is, an
agent crossing a link can detect whether other agents are crossing it in the opposite direction.
Recall that, by Property 3, at least one of n and k must be known.

We first examine the problem without chirality and show that, with knowledge of n, it is
sovable in all configurations that are feasible in the static case; furthermore, this is done in
optimal time Θ(n). On the other hand, with knowledge of k alone, the problem is unsolvable.

We then examine the problem with chirality, and show that in this case the problem is
sovable in all configurations that are feasible in the static case even with knowledge of k alone;
furthermore, this is done in optimal time Θ(n).

4.1 With Cross Detection: Without Chirality

In this section, we present and analyze the algorithm, Gather(Cross,6Chir), that solves
Gathering in rings of known size with cross setection but without chirality.

The two phases of the algorithm are described and analyzed below.
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4.1.1 Algorithm Gather(Cross, 6Chir): Phase 1

The overall idea of this phase, shown in Figure 2, is to let the agents move long enough along
the ring to guarantee that, if they do not gather, they all manage to fully traverse the ring in
spite of the link removals.

More precisely, for the first 6n rounds each agent attempts to move to the left (according to
its orientation). At round 6n, the agent checks if the predicate Pred ≡ (rms < 3n ∧Esteps < n)
is verified. If Pred is not verified, then (as we show) the agent has explored the entire ring and
thus knows the total number k of agents (local variable TotalAgents); in this case, the agent
switches direction, and enters state SwitchDir. Otherwise, if after 6n rounds Pred is satisfied,
then k is not known yet: in this case, the agent keeps the same direction, and enters state
KeepDir.

States: {Init, SwitchDir, KeepDir, Term}.
In state Init:

Explore (left | Ttime = 6n ∧ ¬Pred: SwitchDir; Ttime = 6n ∧ Pred: KeepDir)
In state SwitchDir:

Explore(right | Ttime = 12n ∧ rms < 9n ∧ Esteps < n ∧ Agents = TotalAgents ∧
¬meetingOppositeDir: Term; Ttime = 12n: Phase 2)
In state KeepDir:

Explore (left | crossed ∨ meetingOppositeDir: Term; Ttime = 12n ∧ rms < 9n ∧ Esteps < n:
Term; Ttime = 12n: Phase 2)

Pred ≡ [rms < 3n ∧ Esteps < n]

Protocol Gather(Cross, 6Chir), Phase 1.

Figure 2: Phase 1 of Algorithm Gather(Cross, 6Chir)

In state SwitchDir, the agent attempts to move in the chosen direction until round 12n.
At round 12n, the agent terminates if the predicate [rms < 9n ∧ Esteps < n] holds, predicate
meetingOppositeDir does not hold, and in its current node there are k agents; otherwise, it
starts Phase 2.

In state KeepDir, if at any round predicate crossed or predicate meetingOppositeDir hold,
the agent terminates; otherwise, it attempts to move to its left until round 12n. At round 12n,
if the predicate [rms < 9n ∧ Esteps < n] holds, the agent terminates; otherwise, it switches to
Phase 2.

We now prove some important properties of Phase 1.

Lemma 1. Let agent a∗ move less than n steps in the first 3n rounds. Then, by round 3n, all
agents moving in the same direction as a∗ belong to the same group.

Proof. Let us focus only on the set A of the agents that have the same orientation of the ring as
a∗. In the first 6n rounds of Phase 1, each agents attempts to move in the same direction. if
there is a round r ≤ 6n when a∗ is blocked, then every a ∈ A that at round r is not at the same
node of a∗ does move, due to the 1-interval connectivity of the ring. Since a∗ moves less than n
steps in the first 3n rounds, then the number of rounds in which a∗ is blocked is greater than
2n+ 1. Thus, all agents in A that are not already in the same node as a∗ have moved towards
a∗ of 2n+ 1 steps. On the other hand, everytime a∗ moves, the other agents might be blocked;
however, by hypothesis, this has happend less than n times.

Since the initial distance between a∗ and an agent in A is at most n− 1, it follows such a
distance increases less than n (due to a∗ moving), but it decreases by 2n+ 1 (due to a∗ being
blocked); thus the distance is zero (i.e., they are at the same node) by round 3n.
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Because of absence of chirality, the set A of agents can be partitioned into two sets where all
the agents in the same set share the same orientation of the ring; let Ar and Al be the two sets.

Lemma 2. Let A ∈ {Ar, Al}. If at round 6n Pred is verified for an agent a∗ ∈ A, then all
agents in A are in the same group at round 6n. Moreover, Pred is verified for all agents in A.

Proof. By definition of Pred and by Lemma 1, at round 6n all agents in A are at the same node
of a∗. Also, let r be the first round when all agents in A meet at the same node: by definition,
the value of rms for all agents under consideration is exactly r. From this observation and since
Pred holds for a∗, it follows that Pred must be satisfied for all agents in A.

Lemma 3. Let A ∈ {Ar, Al}. If Pred is not verified at round 6n for agent a∗ ∈ A, then at
round 6n all agents in A have done a complete tour of the ring (and hence know the number of
total agents, k); moreover, Pred is not verified for all agents in A.

Proof. Let us assume by contradiction that there exists a′ ∈ A that has not done a complete
tour of the ring after 6n rounds; that is, a′ has moved less then n steps in the first 3n rounds.
By Lemma 1, all agents in A are in the same node as a∗ by round r < 3n. Therefore, Pred
would be satisfied for any of the robots in A, including a∗: a contradiction.

To prove the second part of the lemma, note that Pred cannot be satisfied for any agent in
∈ A: in fact, by Lemma 2, this would prevent the existence of an agent in A for which Pred is
not satisfied. Thus, the lemma follows.

Lemma 4. If one agent terminates in Phase 1, then all agents terminate and gathering has
been correctly achieved. Otherwise, no agent terminates and all of them have done a complete
tour of the ring.

Proof. Notice that, by construction, the agents do not change their direction before round 6n.
Let us first consider the case when at round r = 0 the agents do not have the same orientation.

We distinguish three possible cases, depending on what happens ar round 6n.

1. At round 6n, all agents change direction. By Lemma 2, it follows that at round 6n all of
them completed a loop of the ring. According to SwitchDir, an agent, to enter the Term
state, has to verify both (a) Agents = TotalAgents and (b) ¬meetingOppositeDir: to
verify (a), the agents have to meet at the same node, thus meetingOppositeDir has to be
true, hence (b) can not verified. It follows that the agents cannot terminate at round 12n,
and the lemma follows.

2. At round 6n, no agent changes direction. Thus, according to the algorithm, Pred is verified
for all agents, that will enter KeepDir state; also, by Lemma 2, all agents that share the
same direction are in the same group (i.e., there are two groups of agents moving in
opposite direction).

By definition of KeepDir, if between round 6n and 12n an agent crosses or meets another
agent, they both terminate; hence, all the agents in their respective group terminate, and
the lemma follows. If no crossing occurs between round 6n and 12n, then both group of
agents are necessarily blocked at the ends of the missing link (otherwise the two groups
would have crossed or met). Thus, at round 12n, rms < 9n (last reset of rms occurred at
round 6n) and Esteps < n (otherwise, again, the two groups would have crossed or met),
for any agent; hence all agents terminate at round 12n, and the lemma follows.

3. At round 6n, only some agents change direction. By Lemmas 2 and 3, it follows that, after
round 6n. all agents will move in the same direction.

Let us assume that, at round 12n, condition rms < 9n ∧ Esteps < n holds for some agent
a∗. If a∗ did not switch direction at round 6n, a∗ terminates at round 12n, say at node v
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(KeepDir); hence, by Lemma 1, all agents gather at v. Otherwise, if a∗ switched direction at
round 6n, since all agents are moving in the same direction, condition meetingOppositeDir
is false from round 6n on; moreover, by Lemma 3, a∗ computed the number k of total
agents at round 6n. Therefore, a∗ terminates at round 12n, say at node v (SwitchDir).
Finally, by Lemma 1, all agents gather at v, and the lemma follows.

On the other hand, if condition rms < 9n ∧ Esteps < n does not hold for any agent at
round 12n, no agent can enter the Term state. Also, following an argument similar to the
one used in Lemma 3, we have that all agents have done a complete loop of the ring after
6n rounds, and the lemma follows.

The other case left to consider is when at round r = 0 the agents have the same orientation.
We distinguish two cases.

1. There is an agent that does not change direction at round 6n. Then, at this time, all
agents are in the same group and none of them switches direction (Lemma 2). Thus, if the
agents terminate at round 12n, gathering is solved, and the lemma follows. Otherwise, by
KeepDir, predicate rms < 9n ∧ Esteps < n is not verified at round 12n for any of them
(they are all in the same group) and they have all done a complete loop of the ring (last
reset of rms occurred at round 6n, hence Esteps ≥ n for all agents), so they start Phase 2,
and the lemma follows.

2. There is an agent that switches direction at round 6n. Then, at this time, all agents are in
the same group, all of them switch direction, and have done a complete loop of the ring
(Lemma 3). The proof follows with an argument similar to the one of previous case.

4.1.2 Algorithm Gather(Cross, 6Chir): Phase 2

If the agents execute Phase 2 then, by Lemma 4, they know both the position of all the homebases
and the number of agents k; that is, they know the initial configuration C. If C ∈ P, gathering
is impossible (Property 5) and they become aware of this fact. Otherwise, if C ∈ E they can
elect an edge eL, and if C ∈ C \ (P ∪ E) they can elect one of the node as leader vL (Property
1). For simplicity of exposition and without loss of generality, in the following we assume that
Phase 2 of the algorithm, shown in Figure 3, starts at round 0.
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States: {Phase 2, ReachedElected, ReachingElected, Joining, Waiting, ReverseDir,Term}.
In state Phase 2:

if C ∈ P then
unsolvable()
Go to State Term

resetAllVariables except TotalAgents
dir =shortestPathDirectionElected()
Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:
dir =opposite(dir)
if Ttime ≥ 3n then

Explore (dir | Agents = TotalAgents ∨Btime = 2n: Term; crossed: Joining)

In state Joining:
dir =opposite(dir)
Explore (dir | Agents = TotalAgents ∨Btime = 2n ∨ crossed: Term; Esteps = 1: ReverseDir)

In state ReachingElected:
Explore (dir | Agents = TotalAgents ∨ Btime = 2n: Term; meetingSameDir: ReachedElected;

meetingOppositeDir ∨ seeElected : ReverseDir; crossed: Waiting)
In state Waiting:

Explore (nil | Etime > 2n: Term; meeting: ReverseDir)
In state ReverseDir:

dir =opposite(dir)
Go to State ReachedElected

Protocol Gather(Cross, 6Chir), Phase 2.

Figure 3: Phase 2 of Algorithm Gather(Cross, 6Chir)

In Phase 2, an agent first resets all its local variables, with the exception of TotalAgents,
that stores the number of agents k; between rounds 0 and 3n, each agent moves toward the
elected edge/node following the shortest path (shortestPathDirectionElected()). If at round 3n an
agent has reached the elected node or an endpoint of the elected edge it stops, and enters the
ReachedElected state. Otherwise (i.e., at round 3n, the agent is not in state ReachedElected), it
switches to the ReachingElected state. If all agents are in the same state (either ReachedElected or
ReachingElected), then they are in the same group, and terminate (Agents = TotalAgents). If
they do not terminate, all agents start moving: each ReachingElected agent in the same direction
it chose at the beginning of Phase 2, while the ReachedElected agents reverse direction.

From this moment, each agent, regardless of its state, terminates immediately if all k agents
are in the same node, or if it is blocked on a missing edge for 2n rounds. In other situations, the
behaviour of each agent a∗ depends on its state, as follows.

State ReachedElected. If a∗ crosses a group of agents, it enters the Joining state. In this new
state, say at node v, the agent switches direction in the attempt to catch and join the agent(s)
it just crossed. If a∗ leaves v without crossing any agent (Esteps = 1), a∗ enters again the
ReachedElected state, switching again direction (i.e., it goes back to direction originally chosen
when Phase 2 started). If instead a∗ leaves v and it crosses some agents, it terminates: this can
happen because also the agents that a∗ crossed try to catch it (and all other agents in the same
group with a∗). As we will show, in this case all agents can correctly terminate.

State ReachingElected. If a∗ is able to reach the elected node/edge (seeElected is verified), it
enters the ReachedElected state, and switches direction.
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If a∗ is blocked on a missing edge and it is reached by other agents, then it switches state to
ReachedElected keeping its direction (meetingSameDir is verified).

Finally, if a∗ crosses someone, it enters the Waiting state, and it stops moving. If while in
the Waiting state a∗ meets someone new before 2n rounds, it enters the ReachedElected state,
and switches direction. Otherwise, at round 2n round it terminates.

Lemma 5. At round 3n of Phase 2, there is at most one group of agents in state ReachingElected,
and at most two groups of agents in state ReachedElected.

Proof. In Phase 2, all agents start moving towards the nearest elected endopoint/node. The
lemma clearly follows for agents in state ReachedElected: in fact, the two groups (one of
them possibly empty) are formed by all the agents that have successfully reached the elected
endpoint/node from each of the two directions.

If an agent is not able to reach the elected endpoint/node within 3n rounds, it must have
been blocked for at least 2n+ 1 rounds; notice that this cannot happen to two agents walking
on disjoint paths toward the elected endpoint/node. Therefore, by Lemma 1, there can be at
most one group of agents in state ReachingElected, and the lemma follows.

Note that, if at round 3n there are two groups of agents in state ReachingElected, they have
opposite moving direction dir ; also, they are either at the same leader node, or at the two
endpoints of the leader edge.

Lemma 6. If an agent a∗ terminates executing Phase 2, then all other agents will terminate,
and gathering is correctly achieved.

Proof. If a∗ terminates because Agents = k, the lemma clearly follows. Let us consider the
other termination conditions.

1. a∗ is either in state ReachedElected or ReachingElected, and Btime = 2n. Agent a∗ is
blocked on one endpoint of the missing edge; thus, after 2n steps, all agents with opposite
direction are on the other endpoint of the missing edge. Note that this holds also if the
other agents are all in the ReachingElected state and reach the elected endpoint/node in
(at most) n rounds: in this case, in fact, they would switch direction, and go back to the
other endpoint of the missing edge in at most other n steps.

Therefore, the other agents will either terminate because they wait for 2n rounds at the
other endpoint of the missing edge, or because they reach the same endpoint node where
a∗ terminated (Agents = TotalAgents is thus verified); hence they correctly gather, and
the lemma follows.

2. a∗ is in state Joining and crossed is verified. First notice that, if a∗ crosses some agent(s),
then the crossed agent(s) are in state Joining as well (the agents in the Waiting state do not
try to actively cross an edge); thus, they were in the ReachedElected state before crossing.
However, this is possible only if there is no group of agents in state ReachingElected: at
round 3n, the two groups ReachedElected starts moving in opposite directions from the
same node or from two endpoints of the same edge. Therefore, when they cross, one of
them has already met the group ReachingElected, if it exists, and when that happens the
group ReachingElected merges with the group ReachedElected. This implies that, when two
groups ReachedElected cross, all agents are in Joining. Therefore, when they cross again,
all agents are on the two endpoints of the same edge, and the lemma follows.

3. a∗ is in state Waiting, and Etime > 2n. By Lemma 5, a∗ has crossed a group of agent in
state ReachedElected. These agents, by entering the Joining state, actively try to reach
the node where a∗ is (in Waiting). If the Joining group does not reach a∗ in 2n rounds,
then the edge connecting them is necessarily missing. Also note that, if there is another
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ReachedElected group, it has to reach the agents in the Joining state within 2n rounds.
Now, these two groups will either terminate by waiting 2n rounds, or because they are
able to reach the Waiting agent a∗, finally detecting that Agents = TotalAgents. In all
cases, the agents correctly terminate solving the gathering, and the lemma follows.

Lemma 7. Phase 2 terminates in at most 10n rounds.

Proof. By Lemma 5, at the end of round 3n, the following holds:

1. If there is only one group with state ReachingElected, the agents terminate on condition
Agents = TotalAgents.

2. If there is only one group with state ReachedElected, the agents terminate on condition
Agents = TotalAgents.

3. If there are two groups with state ReachedElected, they have opposite direction of movements
(otherwise, they would be in the same group). Therefore, within n rounds, they have to
be at distance 1 from each other: they terminate within the next 2n+ 1 rounds either by
crossing in state Joining, or on condition Btime = 2n.

4. If there are two groups of agents in the ReachedElected state, say G and G′, and one group
of agents in the ReachingElected state, say G∗, then G and G′ have opposite direction of
movements (otherwise, they would be in the same group); hence one of them, say G, has
direction of movement opposite to the one of G∗. Therefore, within n rounds, G and G∗

have to be at distance 1 from each other. If they do not cross each other within the next
2n rounds, they will terminate on condition Btime = 2n, and the lemma follows.

Otherwise (they cross within the next 2n rounds), two cases can occur: (A) they both
terminate, one group on condition Btime = 2n and the other one on condition Etime > 2n
in the Waiting state (between the two groups there is the missing edge); or (B) they will
join within the next 2n rounds. In Case (A) the lemma follows. In Case (B), they
either terminate on condition Agents = TotalAgents, and the lemma follows; or the
ReachingElected group enters the ReachedElected state (via Waiting), and starts moving
towards the other ReachedElected group. In this last case, the proof follows from previous
Case 3.

5. If there is one group in the ReachedElected state and one in the ReachingElected state, we
have two possible cases. (A) The two groups are moving towards each other: in this case
the proof follows similarly to the previous Case 3. (B) The two groups move in the same
direction. If the group ReachingElected does not reach the elected endpoint/node within
2n + 1 rounds, the two groups necessarily meet, and thus terminate; hence the lemma
follows. Otherwise, after ReachingElected reaches the elected endpoint/node, this group
enters the ReachedElected state, and the proof follows similarly to the previous Case 3.

Hence we have

Theorem 1. Without chirality, Gathering is solvable in rings of known size with cross
detection, starting from any C ∈ C \ P. Moreover, there exists an algorithm solving Gathering
that terminates in O(n) rounds for any C ∈ C \ P and, If C ∈ P, the algorithm detects that the
configuration is periodic.
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Proof. If algorithm Gather(Cross, 6Chir) terminates in Phase 1 then, by Lemma 4, it correctly
solves gathering and it terminates by round 12n. If it terminates in Phase 2, then by Lemma 6,
it correctly solves gathering, and by lemma 7 will do so in at most 10 additional rounds. Notice,
that in Phase 1, either the agents discover the initial configuration C or they gather. Once they
know C, they can detect if the problem is solvable or not. This proves the last statement of the
theorem

4.2 Knowledge of n is more Powerful Than Knowledge of k

One may ask if it is possible to obtain the same result of Theorem 1 if knowledge of k was
available instead of n; recall that at least one of n and k must be known (Property 3). Intuitively,
knowing k, if an agent manages to travel all along the ring, it will discover also the value of n.
Unfortunately, the following Theorem shows that, from a computational point of view, knowledge
of the ring size is strictly more powerful than knowledge of the number of agents.

Theorem 2. In rings with no chirality, Gathering is impossible without knowledge of n when
starting from a configuration C ∈ E. This holds even if there is cross detection and k is known.

Proof. By contradiction. Let us suppose to have two agents a and b on a ring R where the the
distances between the homebases h1 and h2 are d1 < d2 and they are both odd. Let e1 be the
central edge between h1 and h2 in the smallest portion of the ring (i.e., at distance (d1−1)

2 from

h1 and h2) and e2 the central edge on the other side (i.e., at distance (d2−1)
2 from h1 and h2).

Let us consider an execution E of a correct algorithm A starting from this configuration. The
adversary decides opposing clockwise orientation for the two agents, and it only removes edges
e1 and e2 during the execution of the algorithm. We will show that, by appropriately removing
only this two edges, the adversary can prevent the two agents to ever see each other. At the
beginning the agents moves towards each other (w.l.o.g, in the direction of e1). The adversary
lets them move until they are about to traverse edge e1; at this point edge e1 is removed and
both agents are blocked with symmetric histories. After a certain amount of time, they will
either both reverse direction or terminate. The same removal scheduling is taken whenever they
are about to cross either e1 or e2. The adversary keeps following this schedule until both agents
decide to terminate. Notice that for A to be correct they can only terminate on the endpoints of
one of the edges e1 or e2. Let r′ = f(R) be the round when the agents terminate in execution E.

Let us now consider the same algorithm on a ring R′ of size greater than 4f(R) + 2 where the
two agents are initially placed at distance greater than 2f(R). Consider agent a: the adversary
removes the edge at distance d1−1

2 on its right and the one at distance d2−1
2 on its left whenever

a tries to traverse them. In doing so a does not perceive any difference with respect to execution
E, and therefore terminates at round r′ = f(R). At this point, the other agent b cannot be at
the other extreme of the edge where a terminated, therefore, the adversary now blocks b from
any further move, preventing gathering. A contradiction.

4.3 With Cross Detection: With Chirality

Let us now consider the simplest setting, where the agents have cross detection capability as
well as a common chirality. In this case, the impossibility result of the previous Section does not
hold, and a solution to Gathering exists also when k is known but n is not.

The solution consists of a simplification of Phase 1 of Algorithm Gather(Cross,6Chir),
also extended to the case of k known, followed by Phase 2 of Algorithm Gather(Cross,6Chir).

4.3.1 Algorithm Gather(Cross, Chir): Phase 1

In case of known n, each agent executes Phase 1 of Algorithm Gather(Cross,6Chir) moving
clockwise until round 6n (if not terminating earlier) and then executing Phase 2 of Algorithm
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Gather(Cross,6Chir). By Lemma 2 we know that, if termination did not occur by this round,
then the ring has been fully traversed by all agents.

In case k is known (but n is not), each agent moves counterclockwise terminating if the k
agents are all at the same node. As soon as it passes by k + 1 homebases, it discovers n. At this
point, it continues to move in the same direction switching to Phase 2 at round 3n+ 1 (unless
gathering occurs before). In fact, by Lemma 1, we know that, if an agent does not perform
n steps in the first 3n rounds, then all agents are in a single group and, knowing k, they can
immediately terminate. This means that after 3n rounds, if the agents have not terminated,
they have however certainly performed a loop of the ring, they know n (having seen k + 1 home
bases) and they switched to Phase 2 by round 3n+ 1.

4.3.2 Algorithm Gather(Cross, Chir): Phase 2

When Phase 2 starts, both n and k are known and Phase 2 of Algorithm Gather(Cross, Chir)
is identical to the one of Algorithm Gather(Cross, 6Chir).

We then have:

Theorem 3. With chirality, cross detection and knowledge of either n or k, Gathering is
solvable in at most O(n) rounds from any configuration C ∈ C \ P.

5 Without Cross Detection

In this section we study the gathering problem when there is no cross detection.
We focus first on the case when the absence of cross detection is mitigated by the presence

of chirality. We show that gathering is possible in the same class of configurations as with cross
detection, albeit with a O(n log n) time complexity.

We then examine the most difficult case of absence of both cross detection and chirality.
We prove that in this case the class of feasible configurations is smaller (i.e., cross detection
is a computational separator). We show that gathering can be performed from all feasible
configuration in O(n2) time.

5.1 Without Cross Detection: With Chirality

The structure of the algorithm, Gather(6Cross,Chir), still follows the two Phases. However,
when there is chirality but no cross detection, the difficulty lies in the termination of Phase 2.

5.1.1 Algorithm Gather( 6Cross,Chir): Phase 1

Notice that the Phase 1 of Algorithm Gather(Cross,Chir) described in Section 4.3 does not
really make use of cross detection. So the same Algorithm can be employed in this setting in
both cases when n or k are known. Phase 1 terminates then in O(n) rounds.

5.1.2 Algorithm Gather( 6Cross,Chir): Phase 2

Because of chirality, a leader node can be always elected, even when the initial configuration
is in E (Property 1). We will show how to use this fact to modify Phase 2 of Algorithm
Gather(Cross,Chir) to work without assuming cross detection. We will do so by designing a
mechanism that will force the agents never to cross each other. The main consequence of this
fact is that, whenever two agents (or two groups of agents) would like to traverse the same edge
in opposite direction, only one of the two will be allowed to move thus “merging” with the other.
This mechanism is described below.
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Basic no-crossing mechanism. To avoid crossings, each agent constructs an edge labeled
bidirectional directed ring with n nodes (called Logic Ring) and it moves on the actual ring
according to the algorithm, but also to specific conditions dictated by the labels of the Logic
Ring .

X1X1X2X2

X3X3

X4X4
X5X5

X6X6

Y0Y0

Y1Y1Y2Y2

Y3Y3

Y4Y4 Y5Y5

Y6Y6

X0X0

v0v0

v1v1

v2v2

v3v3

v4v4

v5v5
v6v6

Figure 4: Example of the Logic Ring

In the Logic Ring , each edge of the actual ring is replaced by two labeled oriented edges in
the two directions. The label of each oriented edge ei, 0 ≤ i ≤ n− 1, is either Xi or Yi , where
Xi and Yi are infinite sets of integers. Labels X0 . . . Xn−1 are assigned to consecutive edges
in counter-clockwise direction starting from the leader node, while Y0 . . . Yn−1 are assigned in
clockwise direction (see Figure 4).

Intuitively, we want to construct these sets of labels in such a way that Xi and Yi have an
empty intersection. In this way, the following meta-rule of movement will prevent any crossing:

An agent is allowed to traverse an edge of the ring at round r only if r is contained
in the set of labels associated to the corresponding oriented edge of the Logic Ring.

For this construction, we define Xi = {s+m · (2p+ 2) | (s ∈ Si ∨ s = 2p),∀m ∈ N}, where
p = dlog2 ne, and Si is a subset of {0, 1, . . . , 2p−1} of size exactly p (note that there are

(
2p
p

)
≥ n

possible choices for Si). Indeed, there are 2p = 2dlog2 ne ≥ n ways to choose which elements of
{0, 1, . . . , p− 1} are in Si; each of these choices can be completed to a set of size p by choosing
the remaining elements from the set {p, p+1, . . . , 2p−1}. Therefore there are at least n available
labels, and we can define the Xi’s so that they are all distinct. Then we define Yi to be the
complement of Xi for every i. That is, Xi ∩ Yi = ∅ and Xi ∪ Yi = N.

By construction, it follows that |Xi ∩ {0, 1, . . . , 2p− 1}| = p, and |Yi ∩ {0, 1, . . . , 2p− 1}| = p,
∀i. As a consequence, if i 6= j and m ∈ N, then Xi and Yj have a non-empty intersection in
{m,m+ 1, . . . ,m+ 2p+ 1}. Furthermore, in this labelling, each Xi contains all integers of the
form 2p+m · (2p+ 2), and each Yi’s contains all integers of the form 2p+ 1 +m · (2p+ 2).

The following property is immediate by construction:

Observation 1. Let m ∈ N and let I = {m,m+ 1, . . . ,m+ 2p+ 1}. Then, Xi and Yj have a
non-empty intersection in I if and only if i 6= j, Xi and Xj have a non-empty intersection in I,
and Yi and Yj have a non-empty intersection in I.

From the previous observation, it follows that two agents moving following the Logic Ring in
opposite directions will never cross each other on an edge of the actual ring.

As a consequence of this fact, we can derive a bound on the number of rounds that guarantee
two groups of robots moving in opposite direction, to “merge”. In the following lemma, we
consider the execution of the algorithm proceeding in periods, where each period is composed by
2p+ 2 rounds. We have:
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Lemma 8. Let us consider two groups of agents, G and G′, moving in opposite directions
following the Logic Ring. After at most n periods, that is at most O(n log n) rounds, the groups
will be at a distance d ≤ 1 (in the direction of their movements).

Proof. Without loss of generality, let us assume that G and G′ are initially positioned on two
nodes, respectively v and v′, trying to traverse two edges incident to v and v′. If the two edges
have labels that are the complement of each other in the Logic Ring then, by construction, they
are trying to traverse the same edge in the actual ring in opposite directions, and the lemma
follows.

Let us then assume now that the two groups are trying to traverse edges whose labels in the
Logic Ring are not the complement of each other. Since these sets of labels have a non empty
intersection (Observation 1), it follows that, in each period of 2p+ 2 rounds, the adversary can
block at most one of the two groups. Thus, there exists a round r in which both groups try to
cross two different edges, and at least one of them will succeed, hence moving of one step in the
direction of the other group. Therefore, after at most (n− 1)(2p+ 2) rounds the two groups
will be at a distance at most one in the directions of their movements. Since each period has
O(log n) rounds, the lemma follows.

States: {ReachedElected, ReachingElected, ChangeDir, ChangeState, DirCommR, DirCommS, Term}.
In state Phase 2:

if C ∈ P then
unsolvable()
Go to State Term

resetAllVariables except TotalAgents
dir = leaderMinimumPath()
Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:
if Ttime ≥ 3n then

dir = clockwiseDirection()
Explore (dir | (BPeriods ≥ 4n+ 8 ∨ Agents = TotalAgents): Term;)

In state ReachingElected:
if Ttime = 3n then

dir = counterclockwiseDirection()

Explore (dir | (BPeriods ≥ 4n+ 8 ∨ Agents = TotalAgents): Term;)

Figure 5: Phase 2 of Algorithm Gather( 6Cross,Chir)

We are now ready to describe the second Phase of the algorithm.

Phase 2. In the following, when the agents are moving following the meta-rule in the Logic
Ring , we will use variable BPeriods, instead of Btime, indicating the number of consecutive
periods in which the agent failed to traverse the current edge. As in the case of Btime, the
new variable BPeriods is reset each time the agent traverses the edge, changes direction, or
encounters new agents in its moving direction.

In the first 3n rounds, each agent moves towards the elected node using the minimum distance
path. After round 3n, the agents move on the Logic Ring ring: the group in state ReachedElected
starts moving in clockwise direction, the group in state ReachingElected in counterclockwise.
One of the two groups terminates if BPeriods ≥ n rounds or if Agents = k. This replaces the
terminating condition Btime = 2n that was used in case of Cross detection. Phase 2 of the
Algorithm is shown in Figure 5.
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Lemma 9. Phase 2 of Algorithm Gather(6Cross,Chir) terminates in at most O(n log n)
rounds, solving the Gathering problem.

Proof. Let us first prove that the algorithms terminates in O(n log n) rounds. At the end of
round 3n of Phase 2, we have at most one group of agents in state ReachedElected and one group
in state ReachingElected (Lemma 5 derived in the case with cross-detection still holds). If there
is only one of these group, termination is immediate from condition Agents = k. If both groups
are present (moving in opposite direction by construction) we have that, by Lemma 8 the two
groups will be at distance 1 by at most round 3n+ n(2p+ 2), where p is a quantity bounded by
O(log n). At this point, they either meet in one node because only one of the two group will be
allowed to cross the edge, and therefore they terminate by condition Agents = k, or they are
blocked by the adversary on two endpoints of the same edge. In this case, however, they will
terminate e by condition BPeriods ≥ n. Notice that, if a group G terminates by BPeriods ≥ n
gathering will be achieved, because by Lemma 8, we have that the other group G′ is at the other
endpoint of the edge where G has been blocked. Therefore, G′ either terminates by condition
BPeriods ≥ n, or it reaches the node where G is and it terminates by condition Agents = k.

From the previous Lemma, and the correctness of Phase 1 already discussed in Section 4.3,
the next theorem immediately follows.

Theorem 4. With chirality and knowledge of n or k, Gathering is solvable from any configu-
ration C ∈ C \ P. Moreover, there exists an algorithm solving Gathering that terminates in
O(n log n) rounds for any C ∈ C \ P, if C ∈ P the algorithm either solves Gathering or it
detects that the configuration is in P.

5.2 Without Cross Detection: Without Chirality

In this section, we consider the most difficult setting when neither cross detection nor chirality
are available. We show that in this case Gathering is impossible if C ∈ E . On the other hand,
we provide a solution for rings of known size from any initial configuration C ∈ C \ (P ∪ E),
which works in O(n2) rounds. We start this Section with the impossibility result.

5.2.1 Impossibility for C ∈ E

Theorem 5. Without chirality and without cross detection, Gathering is impossible when
starting from a configuration C ∈ E. This holds even if the agents know C (which implies
knowledge of n and k).
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Figure 6: Configuration used to prove the impossibility of Gathering when the configuration
is in E and there is no cross detection

Proof. By contradiction. Consider an initial configuration C with two agents al, ar, a unique axis
of symmetry passing through edges eu, ed, and where the two homebases hl, hr are at distance at
least 4 from eu and 5 from ed (see an example in Figure 6). Let A be an algorithm that solves
gathering starting from configuration C in an execution E where the adversary does not remove
any edge. Note that, because of symmetry, without edge removals the two agents can cross each
other only over eu or ed never meeting in the same node at the same time, so gathering could
be achieved only on the two endpoint of one of these edges. Let us suppose, w.l.o.g, that A
terminates when the two agents are on the endpoints of edge eu = (vu1 , vu2). Let v′u2

be the
neighbour of vu2 different from vu1 (resp. v′u1

the neighbour of vu1 different from vu2). Let rf be
the round in which al reaches vu1 and terminates (note that al could have passed by vu1 several
time before, without terminating; let r1, possibly equal to rf , be the first round when al reaches
vu1). Agent al may reach vu1 at round rf in two ways: Case 1) after performing a loop of the
ring starting from vu1 (note that, during the loop, the agents may go back and forth over some
nodes several times). Case 2) after moving in a certain direction for X step and then back for
other X step, possibly moving back and forth over some nodes several times. In either case,
agent ar does exactly the symmetric moves of al with respect to the symmetry axis.

Let us now consider an execution E′ starting from C where the agents behave like in execution
E until they possibly find themselves blocked by an edge removal. We will show that the edge
removal schedule chosen by the adversary does not influence agent al, which behaves exactly as
in execution E terminating in node vu1 at round rf , but gathering is not achieved.
No edge removal is done on the way of agent al until it terminates in node vu1 . If al does so
by looping around the ring (Case 1), also ar is performing an opposite loop and the adversary
blocks ar, on an endpoint of ed, after the agents cross each other, for the last time, on ed during
their loop. Regardless of the decision taken by ar at this point, when al terminates, ar is at
at least two edges apart. If al is reaching vu1 after moving for X steps and coming back (Case
2), ar is performing the symmetric moves and the adversary behaves differently depending on
various sub-cases. Case 2.1) Assume first that al (resp. ar) leaves the set of nodes {vu1 , vu2 ,
v′u2
} (resp. {vu2 , vu1 , v′u1

}) at least once after round r1. In this case, if the agents do not traverse
ed or eu, then the adversary blocks ar the last time it leaves node vu2 ; if instead they traverse
ed, then al, ar cross on ed and the adversary blocks ar on an endpoint of ed after their last cross.
Finally, if the agents cross each other on eu, then the adversary blocks ar as soon as it moves
from v′u1

. In all these situations, when al reaches vu1 , ar is at least two edges apart. Case 2.2)
Assume now that al never leaves the set of nodes {vu1 , vu2 , v′u2

} after round r1. The adversary
blocks agent ar right before it is entering for the first time in the set of nodes {vu2 , vu1 , v′u1

},
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this would be undetectable by al, and, by construction, ar would be at distance at least 2 from
vu1 , when al terminates.

Being run E′ undistinguishable for al from the execution E, we have that, in E′, al terminates
on vu1 , while agent ar is not on a neighbour node of vu1 . At this point the adversary blocks ar
from any further move and gathering will never be achieved. A contradiction.

5.2.2 Algorithm Gather( 6Cross,6Chir): Phase 1

As we know, the lack of cross detection is not a problem when there is a common chirality.
However, the combination of lack of both cross detection and chirality significantly complicates
Phase 1, and new mechanisms have to be devised to insure that all agents finish the ring
exploration and correctly switch to Phase 2.

In the following we will denote by Btime′ the value of Btime at the previous round, that is
at round Ttime− 1.

States: {Init, SyncR, SyncL, Term}.
In state Init:

Explore (left | Ttime ≥ (3n)(n+ 3): SyncL; Btime ≥ (2n+ 2) ∨ (Btime′ ≥ n+ 1 ∧meeting): Term)
In state SyncL:

Explore (left | (Ttime ≥ (3n)(n + 3) + 2n + 1 ∧ Btime > n) ∨ Agents = TotalAgents: Term;
Ttime ≥ (3n)(n+ 3) + 2n+ 1: Phase 2; 0 < Btime ≤ n: SyncR)
In state SyncR:

Explore (right | Agents = TotalAgents: Term; Ttime ≥ (3n)(n+ 3) + 2n+ 1: Phase 2; Btime = 1:
SyncL)

Figure 7: Phase 1 of Algorithm Gather( 6Cross,6Chir)

Each agent attempts to move along the ring in its own left direction. An agent terminates in
the Init state if it has been blocked long enough (Btime ≥ 2n+ 2), or if it was blocked for an
appropriate amount of time and is now meeting a new agent (Btime′ ≥ n+ 1 ∧meeting). If an
agent does not terminate by round (3n)(n+ 3) it enters the sync sub-phase that lasts 2n rounds;
this syntonization step is used to ensure that, if a group of agents terminates in the Init state
by condition (Btime ≥ 2n+ 2), all the remaining active agents will terminate correctly in this
sub-phase.

An agent with Btime = 0 or Btime > n starts the sync sub-phase in state SyncL. Instead,
an agent with 0 < Btime ≤ n starts in state SyncR and resets Btime to zero. In the successive
rounds, when/if an agent is blocked in state SyncR (resp. SyncL) it switches direction, changes
state to SyncL (resp. SyncR), resetting the variable Btime to 0. The agent terminates if
it either detects k agents at its current node, or if it never moved (Esteps = 0) by round
(3n)(n+ 3) + 2n+ 1. Otherwise, at round (3n)(n+ 3) + 2n+ 1 it starts Phase 2.

Observation 2. If an edge is missing for 3n consecutive rounds, between rounds 0 and (3n)(n+3),
then all agents terminate. Therefore, if an agent has not terminated by round (3n)(n+ 3), then
it has done a complete tour of the ring.

Lemma 10. If an agent does not terminate at the end of Phase 1, then no agent terminates
and all of them have done at least one complete loop of the ring. If an agent terminates during
Phase 1, then all agents terminate and Gathering is correctly solved.

Proof. The proof proceeds by considering all possible cases when an agent a∗ can terminate
during Phase 1.
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If a∗ terminates at a round r ≤ (3n)(n+ 3), then it is blocked on a missing edge, say at node
v. Also, by definition of state Init, either condition Btime ≥ 2n+ 2 or Btime′ ≥ n+ 1∧meeting
is satisfied by a∗ at round r.

• If Btime ≥ 2n + 2 is verified at round r, then all agents with the same direction of
movement of a∗ are terminated as well at v, and for all of them Btime ≥ 2n+ 2 is verified.
Let us consider the agents with direction of movement opposite to that of a∗. If there is
no such agent, then the lemma clearly follows. Otherwise, they form a group, call it G, on
the other endpoint of the missing edge. Note that, at round r, the agents in G have been
blocked for at least 2n+ 2− (n+ 1) = n+ 3 rounds, hence, at round r, for the agents in
G, (**) Btime ≥ n+ 3 is verified.

If the agents in G are terminated at round r, then the lemma follows. Otherwise, at
round r, for the agents in G, Btime′ ≥ n+ 1 is satisfied (see (**)). If the agents in G do
not change state, and if the edge is missing for the next n+ 1 rounds, then agents in G
terminate on condition Btime ≥ 2n + 2. Otherwise, if the edge comes alive within the
next n+ 1 rounds, the agents in G will cross it, meet the (terminated) agents in v, and
terminate as well. Thus, gathering is correctly achieved, and the lemma follows. On the
other hand, if the agents in G switch to the SyncL state, two cases can occur: (a) the edge
is missing for the next 2n rounds: in this case, the agents in G terminate on condition
Ttime ≥ (3n)(n+ 3) + 2n+ 1 ∧Btime > n; (b) the edge comes alive within the next 2n
rounds: in this case, the agents in G cross it and meet all the other (terminated) agents in
v. In both cases, the gathering is correctly achieved, and the lemma follows.

• If Btime′ ≥ n+ 1 ∧meeting is verified at round r, then all agents with the same direction
of movement of a∗ are terminated as well at v, and for all of them Btime′ ≥ n+1∧meeting
is verified. Let us consider the agents with direction of movement opposite to that of a∗.
They form a group, call it G, on the other endpoint of the missing edge.

First note that, since meeting is verified at round r, at the previous round r− 1, a∗ was at
v’s previous node (according to the chirality of a∗), say vi−1. Moreover, by Btime′ ≥ n+ 1
the edge between vi−1 and v is missing at round r − 1, and the agents in G must have
entered in a terminal state by round r − 1 (Notice that the agents in G had enough time
to reach the other endpoint and enter the port, therefore if they were not in terminal state
at round r, then a cross would have occurred at round r, hence meeting not satisfied);
also, the agents in G terminated on condition Btime ≥ 2n + 2. Therefore, at round r,
gathering is correctly achieved at v, and the lemma follows.

It remains to prove the correctness of the termination of a∗, say at node v, in a round r >
(3n)(n+ 3), that is during the sync sub-phase. In this case, by Observation 2, all agents know
k. The correctness of the termination when condition Agents = k holds is trivial; thus, let us
consider the case when termination occurs because Ttime ≥ (3n)(n+ 3) + 2n+ 1 ∧Btime > n
holds.

Let G be the group of agents that terminates for this condition. Notice that this group must
have never left the SyncL state. In fact, any agent that enters state SyncR at any time during
the sub-phase will never have Btime > n for the rest of the sub-phase even when it becomes
SyncL; thus, the only agents with Btime > n at time (3n)(n+ 3) + 2n+ 1 are those that entered
the SyncL state with Btime > n and never switched. This implies that the edge on which G
terminates has been missing for the whole execution of the sub-phase.

At round (3n)(n+ 3) + n all agents with direction of movements opposite to the one of the
agents in G are in another group G′ on the other endpoint of the missing edge. If the agents in
G′ are already terminated, the termination of the agents in G correctly solves gathering, and the
lemma follows. If instead the agents in G′ are not terminated, but they are also in state SyncL
with Btime > n then, they will also terminate for Ttime ≥ (3n)(n+ 3) + 2n+ 1 ∧Btime > n,
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therefore gathering is correctly achieved, and the lemma follows. Otherwise, the agents are
either in state SyncL or SyncR with Btime ≤ n, therefore they will change direction at round
(3n)(n + 3) + n + 1 in the next n rounds they will move towards G, and will reach group G;
when this happens, gathering will be correctly achieved (on condition Agents = k), and the
lemma follows.

5.2.3 Algorithm Gather( 6Cross,6Chir): Phase 2

By Lemma 10, at the end of Phase 1 each agent knows the current configuration. Since we
know that the problem is not solvable for initial configurations C ∈ E (Theorem 5), the initial
configuration must be non-symmetric (i.e., without any axis of symmetry) or symmetric but
with the unique axis of symmetry going through a node. In both cases, the agents can agree on
a common chirality. In fact, if C does not have any symmetry axes, the agents can agree, for
example, on the direction of the lexicographically smallest sequence of homebases inter distances.
If instead there is an axis of symmetry going through a node vL, they can agree on the direction
of the port of vL with the smallest label.

We can then use as Phase 2, the one of Algorithm Gather(6Cross,Chir) presented in
Section 5.1.2.

Theorem 6. Without chirality, Gathering is solvable in rings of known size without cross
detection from all C ∈ C \ (P ∪ E). Moreover, there exists an algorithm solving Gathering that
terminates in O(n2) rounds for any C ∈ C \ (P ∪ E), if C ∈ P ∪ E the algorithm either solves
Gathering or it detects that the configuration is in P ∪ E.

Proof. By Lemma 10, it follows the correctness and the O(n2) bound of Phase 1. The correctness
and complexity of Phase 2, follows by the Lemma 9 of Section 5.1.2. The last statement of the
theorem is obvious by Lemma 10, if at the end of Phase 1 the gathering is not solved, then
agents know C, therefore they can detect if the configuration is in P ∪ E .

6 Conclusion

In this paper we have investigated the problem of Gathering in a dynamic rings. When n is
known, we presented a complete characterisation on the initial configurations where Gathering
is solvable, with and without chirality and with and without the capability to detect agents
crossing. Interestingly, in such dynamic setting the knowledge of n cannot be trade-off with the
knowledge of k, this is in contrast with the known results for Gathering in static rings. An
open problem is to investigate the complexity gap between the algorithms that solve Gathering
with cross detection and the algorithms that do not use cross detection. Our non-crossing
technique introduces a complexity of O(n log n) rounds, it would be interesting to show if such
log n factor is necessary or not.
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