
Computations by Luminous Robots

Paola Flocchini

School of Electrical Engineering and Computer Science
University of Ottawa, Canada
flocchin@site.uottawa.ca

Abstract. The study of computability issues by a system of simple,
autonomous, oblivious, mobile robots, operating in the plane in Look-
Compute-Move cycles, has been the object of intensive investigations.
These robots do not have explicit communication mechanisms, but they
implicitly cooperate towards a common goal.
This paper focuses on luminous robots, a recently introduced model where
the robots are equipped with a light that can take a constant number of
different colors. The light is visible to the observing robots and stays lit
from a computation cycle to the next. The availability of lights, which
provides little communication and memory, has clearly a great impact
on the system of robots. We review the recent results, highlighting the
many open problems and research directions.

1 Introduction

Consider a set of autonomous mobile computational entities, called robots, which
operate in the Euclidean plane initially occupying distinct points. The robots are
provided with (possibly different) local coordinate systems centered in them-
selves, and with sensors that allow them to perceive the positions of the other
robots. They operate in cycles of Look-Compute-Move activities: when ac-
tive, a robot observes the others, it computes a destination point, and it moves
towards it. Once a cycle is completed, however, a robot forgets any previous
information, and it starts the next cycle from scratch, making a computation
solely on the basis of its current observation. Such forgetful behaviour is called
obliviousness. Robots operate synchronously (FSYNC), if they perform simulta-
neously all their Look-Compute-Move activities in synchronized rounds; semi-
synchronously (SSYNC), if only subsets of robots are activated in synchronized
rounds; or asynchronously (ASYNC), if there is no synchronization and each robot
operates at its own pace.

Autonomous oblivious robots have been extensively investigated, considering
a variety of assumptions on their characteristics (e.g., limited vs. full visibility,
level of synchrony, availability of a common coordinate system, etc.) and study-
ing how these assumptions impact the robots’ computational power on basic
coordination tasks. Typical tasks in this setting are, for example, Pattern For-
mation, where the robots must place themselves so to form a given shape (e.g.,
see [13, 16, 21, 24]), Gathering, where the robots must move to the same point



(e.g., see [1, 2, 8, 14, 18]), Scattering, where robots have to move from each other
so to cover the space (e.g., see [3, 7, 17]). For a recent account of the current
investigations, see [12].

Obliviousness is very limiting for the robots, which can rely only on the
environment to decide their next step towards a common goal. On the other
hand, it is a very desirable characteristic because it provides a form of fault-
tolerance and self-stabilization.

Recently, to partially overcome the limits of obliviousness while maintaining
some of its advantages, a stronger model has been introduced where oblivious
robots carry a “light” that can take different colors (a constant number of them),
can be seen by the observing robots, and stays on from cycle to cycle. Clearly, the
availability of lights drastically changes the computational power of the robots,
which have now the means for a little memory (by coding information to be
stored into the light), and a little communication (by using the light to transmit
information to the other robots). Although the idea was suggested some time
ago [19], the actual model has been formalized only recently [6], and has already
generated several interesting results.

The first natural question is to understand the impact that the availability
of lights has on the computability power of the robots depending on their level
of synchrony. This capability is quite strong; in fact, ASYNC luminous robots can
perform any task solvable by SSYNC non-luminous ones. Moreover, in contrast
with the situation in the classical setting, in the luminous realm there is no com-
putational difference between the ASYNC and the SSYNC models. Several results in
this regards have been derived [6], but the full computational picture describing
the impact of lights on the various models is still to be completed.

Another interesting issue is to de-couple the concept of lights into two quite
distinct components: the one that provides some memory to the robots (an in-
ternal state that persists from cycle to cycle), and the one that allows some form
of communication (an external visible sign). Understanding the computational
power of each component versus the power of their combination is a challenging
and important issue. A first step in this direction has been done by studying
the impact of the two individual capabilities on the rendezvous problem [15] and
leaving a wealth of open problems still to be addressed.

This paper reviews the recent discoveries on luminous robots indicating the
research directions emerged by the study of this new model.

2 The Robots

Let R = {r1, r2, · · · , rn} be a set of robots, operating in R2. Each robot is the
centre of its own coordinate system and the robots have no agreement on the
orientation of the system, on its handedness, or on their unit of distance. We
denote by r(t) ∈ R2 the position occupied by robot r ∈ R at time t (for descrip-
tion purposes, the positions are expressed in a global coordinate system, which
is unknown to the robots). Two robots r and s are said to collide at time t if
r(t) = s(t).



The robots are provided with sensors that allow them to perceive the posi-
tions of the other robots. If they can sense the whole environment, we say that
they have full visibility, if they are able to perceive other robots only within a
certain visibility radius, we say that they have limited visibility.

The robots are autonomous (i.e., without any external control), anonymous
(i.e., without internal identifiers), indistinguishable (i.e., without external mark-
ings), without any direct means of communication.

At any time, robots can be active or inactive, and initially they are all in-
active. When activated, a robot performs a Look-Compute-Move sequence of
operations: it first obtains a snapshot of the positions, expressed in its local coor-
dinate system, of all visible robots (Look); using the last obtained snapshot as
an input, the robot executes an algorithm (the same for all robots) to compute
a destination point x ∈ R2 (Compute); finally, it moves towards x (Move). It
then stays inactive until the next activation.

The robots are oblivious in the sense that, when a robot becomes inactive, all
its local memory is reset. In other words, upon becoming active again, a robot
has no memory of past computations and snapshots.

A luminous robot r is a robot that, in addition to the above capabilities, is
endowed with a persistent and externally visible state variable Light[r], called
light, whose values are from a finite set C of colors. The value of Light[r] (i.e., its
color) can be changed in each cycle by r at the end of its Compute operation.
A light is externally visible in the sense that its color at time t is visible to all
robots that perform a Look operation at that time in its visibility radius. A
light is persistent in the sense that, while r is oblivious and forgets all other
information from previous cycles, the color is not automatically reset at the end
of a cycle.

With regards to the activation and timing of the robots, there are two basic
settings: semi-synchronous (SSYNC) and asynchronous (ASYNC). In SSYNC, the
time is discrete; at each time instant t (a round) a subset of the robots is ac-
tivated and performs its operations atomically, ending at time t + 1. At any
given round, any subset of robots may be activated. In particular, if all robots
are activated at every round, the system is fully synchronous (FSYNC). At the
opposite spectrum, in ASYNC, there is no common notion of time; each robot is
activated independently, the Look operation is instantaneous, but the Com-
pute and Move operations can take an unpredictable (but finite) amount of
time, unknown to the robot.

The choice of the activations is done by an adversary, which, for fairness,
activates each robot infinitely often. In ASYNC, the adversary choses also the
(finite) duration of each operation. The adversary might or might not have the
power to interrupt the movement of a robot before it reaches its destination in
the Move operation. If it does, the system is said to be Non-Rigid; the only
constraint on the adversary is that there exists a constant δ > 0 such that, if
interrupted before reaching its destination, a robot moves at least a distance δ,
not known to the robot itself. Notice that, otherwise, the adversary would be
able to prevent a robot from reaching any given destination in a finite number of



turns. If movements are not under the control of the adversary, and every robot
reaches its destination at every turn, the system is said to be Rigid.

3 Luminous robots in FSYNC, SSYNC, and ASYNC

3.1 The Setting

A natural research investigation when considering luminous robots is to un-
derstand the impact of lights on the computability power of the robots, with
respect to the different synchrony levels of their scheduler. It is well known that,
in absence of lights, the three models form a strict hierarchy in that there exist
problems solvable in FSYNC but not in SSYNC (for oblivious robots [21]), as well as
problems solvable in SSYNC but not in ASYNC (for non-oblivious robots [20]). The
first question is whether such a strict dominance exists also in the context of lu-
minous robots. Interestingly, it turns out that the availability of lights does not
preserve it: the difference between asynchrony and semi-synchrony disappears
making the two model equally powerful [6].

In the following, when robots are luminous we will refer to luminous ASYNC

(resp. luminous SSYNC, luminous FSYNC) models, and we denote by ASYNCm (resp.
SSYNCm, FSYNCm) luminous models using m colors.

3.2 Luminous ASYNC vs. SSYNC

This Section describes the relationship between luminous ASYNCO(1) versus non-
luminous SSYNC, as well as the one between luminous ASYNCO(1) and SSYNCO(1).

a) Luminous ASYNC is at least as powerful as SSYNC. First of all, syn-
chronous systems equipped with lights (with a constant number of colors) are at
least as powerful as semi-synchronous systems without lights. In fact, as shown
below, any problem solvable in SSYNC without lights is also solvable by asyn-
chronous luminous robots.

Given an algorithm P that solves a problem in SSYNC, there is a simulation
protocol for luminous robots in ASYNC in which every execution is equivalent to
a SSYNC execution of P. The lights used by the simulation protocol can have
five colors: T(rying), M(oving), S(topped), F(inished), W(aiting). At the begin-
ning, all lights are set to T. The protocol is a sequence of Mega-Cycles, each
of which starts with all robots trying to execute protocol P (with color T) and
ends with all robots finishing the Mega-Cycle (with color F) having executed
P once. All robots with light F eventually turn their lights to T and when this
process is completed, a new Mega-Cycle starts. The protocol is designed in such
a way that, during each Mega-Cycle, every robot executes exactly one Look-
Compute-Move step of algorithm P, changing light to M when performing
the move prescribed by algorithm P. The execution of the simulation is semi-
syncronous because robots allowed to execute the step concurrently in the same
Mega-Cycle are guaranteed to have observed the same snapshot (i.e., while no-
body was moving). The transitions describing the change of color of the robots
in a Mega-Cycle are depicted in Figure 1.



T" M" S" F"See#only#robots#
#colored#T#and#S#

W"

Do#not#see#
#any#robot#
colored##T###

See#only#robots#
Colored#T#and#F#

Do#not#see#
##any#robot#
####colored#M###

See##
at#least##
a#robot#
colored#M###

See#only#robots#
colored#S#and#F#

Fig. 1. ASYNC simulation of a SSYNC algorithm (executing P on the current snapshot
only when transitioning from T to M). 1) The content of a circle represents the color of
the computing robot; 2) the caption on an arrow describes a condition on the colors
seen by the robot; 3) the transition between two colors indicates the local change of
color corresponding to the given condition.

Theorem 1. [6] Let P be an algorithm that solves a problem in SSYNC. There
exists an algorithm S(P) in luminous ASYNC in which every execution is equiv-
alent to a SSYNC execution of P.

b) Luminous ASYNC is more powerful than SSYNC. Luminous robots in
ASYNC turn out to be actually more powerful than robots without lights in SSYNC.
In fact, there exist problems that can be solved by asynchronous luminous robots
with O(1) colors, but that are unsolvable by semi-synchronous robots without
colors. One such a problem is rendezvous of two oblivious robots where the
robots, initially located in different points of the plane, need to gather exactly in
the same point. In fact, it is well known that rendezvous is unsolvable in SSYNC

[21]. The impossibility in the classical model without colors is due to the fact
that the adversary could schedule the activations in such a way that the robots
are forced to oscillate and never meet. However, there exists a simple solution
in luminous ASYNC that uses four colors for anonymous, oblivious robots with
non rigid movement and no common coordinate systems [6]. A luminous robot
can exploit the lights to decide when to move towards the midpoint and when
instead to move towards the other robot, without ever risking to switch position.
The solution makes use of four colors: {a, b, c, d}, and it is depicted in Figure 2.

Theorem 2. [6] ASYNCO(1) is more powerful than SSYNC.

c) Luminous ASYNCO(1) is as powerful as luminous SSYNCO(1). Finally, in
contrast with the dominance of SSYNC versus ASYNC observable without lights,
the difference between asynchrony and semi-synchrony disappears when they are
both enhanced with lights. This can be seen by showing that, given an algorithm
P designed for SSYNCk, there is an execution of the simulation protocol described



a" b" c" d"

See#color#c#
!!MOVE!
!to!other!

See#color##
###c#or#d#

See#color##
####d#or#a#

See#color#a#

MOVE!to!half!

Fig. 2. Rendezvous for luminous robots in ASYNC. 1) The color in a circle represents the
color of the computing robot; 2) a transition between a color and another indicates a
change in the robot’s color; 3) the caption on top of a transition (if any) indicates what
the computing robot sees; 4) the caption below a transition describes the corresponding
movement (if any) prescribed by the algorithm.

earlier, which uses precisely O(k) colors (thus works in ASYNCO(k)). The result
then follows.

Theorem 3. [6] ASYNCO(1) is as powerful as SSYNCO(1)

3.3 Luminours ASYNC vs. FSYNC

For the case of fully synchronous system the only known result is that there
exist problems that robots cannot solve without lights, even if they are fully-
synchronous, but that can be solved by asynchronous luminous robots with O(1)
colors. One such problem is the Oscillating Points Problem requiring two
robots, x and y, initially in distinct locations, to alternately come closer and
move further from each other.

Theorem 4. [6] FSYNC is not more powerful than ASYNCO(1)

3.4 Open Problems

First and foremost, it is still unknown whether or not there are problems solv-
able by fully-synchronous robots but not by asynchronous luminous robots; a
positive answer would imply that ASYNCO(1) and FSYNC are incomparable, while
a negative one would imply that ASYNCO(1) is more powerful than FSYNC.

Moreover, it is known that the availability of a snapshot renders asynchronous
luminous robots more powerful than regular fully-synchronous one [6]; whether
a property weaker than a snapshot would suffice to achieve the same result is
still open.

4 Computing by Luminous Robots: Mutual Visibility

4.1 The Setting and the Problem

In this Section we consider a variant of the model, where robots cannot see
through other robots; in other words, r can see another robot s (equivalently, s



is visible to r) at time t if and only if no other robot lies in the segment r(t)s(t)
at that time. Moreover, collisions are not permitted. In such a setting, the color
of robot r at time t can be seen by all robots visible by r at that time.

The Mutual Visibility problem requires the robots, initially located in different
position, to terminate in a configuration where they are still in distinct locations
with no three of them being collinear.

Let H(t) denote the convex hull of {r1(t), r2(t), · · · , rn(t)} at time t. The
robots lying on its boundary are called external robots at time t, while the ones
lying in its interior are the internal robots at time t. Note that a robot may
not know where the convex hull’s vertices are located, because its view may be
obstructed by other robots. However, it can easily determine whether it is an
external or an internal robot.

4.2 Solutions

We describe two solutions, Algorithm Shrink and Algorithm Contain whose goal
is to allow the robots to position themselves at the vertices of a convex polygon,
thus solving Mutual Visibility. These algorithms are based on different strategies,
and are tailored for different situations. Protocol Shrink uses two colors and
requires rigid movements, while protocol Contain uses more colors but operates
also with non-rigid movements [9–11].

a) Algorithm Shrink

Consider Rigid robots in SSYNC. The main idea of Algorithm Shrink is to
make the external robots move towards the inside of the convex hull formed by
the robots, so to shrink it (see Figure 3). Initially the robots have a pre-defined
colour Off and they become Vertex to signal termination. Eventually, all the
robots reach a strictly convex configuration, they all see each other with colour
Vertex, and they terminate.

Fig. 3. From [10]: Combined motion of all vertex robots in Algorithm Shrink

More precisely, the behaviour of the robots is as follows: a vertex robot moves
inside the triangle formed by itself and its own two neighbors on the convex hull’s
boundary (note that they are necessarily visible). The goal of the move is to make



the convex hull shrink, and possibly to increase the number of vertex robots. The
destination inside the triangle is carefully calculated so to avoid collisions with
other robots that may be moving at the same time, and to prevent the moving
robot to become a non-vertex robot. A few other technicalities are required
to treat the special case when the initial configuration is a line and to avoid
deadlocks when all robots visible to an internal one are coloured Vertex [10].

p

a b

u
v

c

(a) Making c become a vertex
robot, without moving past it

p

a b

vu

(b) Default move

Fig. 4. From [10]: Move of an external robot p in two cases (robots’ locations are
indicated by small circles), where a and b are the locations of p’s two neighbors on H.

Algorithm Shrink correctly terminates in Rigid SSYNC using two colors.
Moreover, it is possible to slightly modify it so to solve Mutual Visibility also
when the two colors are not available, but robots have knowledge of n (the total
number of robots in the system).

Theorem 5. [10] Protocol Shrink always solves Mutual Visibility by Rigid robots
in SSYNC with 2 colors, or with no colors if the robots know their number, n.

b) Algorithm Contain

Consider Non-Rigid robots in SSYNC. Algorithm Contain consists of two
phases: an interior depletion phase and a vertex adjustments phase, to be ex-
ecuted in succession. In the first phase, the internal robots move towards the
boundary of the convex hull signalling that they become external by changing
their light, and in the second phase the robots (who are now all external) make
small adjustments to finally reach a strictly convex configuration.

More precisely, let H′(t) be the convex hull of the positions of the internal
robots at time t ∈ N. When a robot r understands that it lies on a vertex of
H′, it moves towards the boundary of H, part of which is identifiable by r. The
destination point depends on the position of r within H′ (whether r is the only
internal robot, or H′ is a line segment and r occupies one endpoint, or H′ is a
non-degenerate polygon and r it lies on one of its vertices). Some of these cases
are depicted in Figure 5. It can be shown that eventually all robots become
External and the interior of the convex hull is depleted.

The vertex adjustments phase proceeds as follows: when a robot lies at a ver-
tex of H and it sees only robots with light sets to External, it makes the “default
move” depicted in Figure 4(b). It also sets its light to Adjusting, to remember



′H

H

(a) Case with collinear internal robots

p
q

′H
H

(b) General case

Fig. 5. From [11]: Interior depletion phase of Algorithm Contain.

it already adjusted. When the adjustment is done, the robots at a and b are
guaranteed to occupy vertices of H. Each external robot becomes a vertex robot
at some point, then it adjusts its position while remaining a vertex, possibly
making its adjacent robots become vertices as well, and it terminates. When
all robots have terminated, the configuration is strictly convex, and therefore
Mutual Visibility is solved.

Theorem 6. [11] Protocol Contain always solves Mutual Visibility by Non-Rigid
robots in SSYNC with 3 colors.

Slight variations of protocol Contain can solve the problem under a variety
of combination of conditions and knowledge.

Theorem 7. [11] In SSYNC, Mutual Visibility can be solved by Non-Rigid robots
with no colors, if the robots know δ (the minimum distance traversed by a robot)
and their number n, and with 2 colors, if the robots know δ. In ASYNC, Mutual
Visibility can always be solved with 3 colors in ASYNC by Rigid robots, and in
ASYNC by Non-Rigid robots, if they agree on the direction of one coordinate
axis.

An interesting issue that has been investigated in regards to the Mutual
Visibility problem in FSYNC is the time complexity of a solution. Indeed, a Rigid
logarithmic time algorithm has been proposed [22] and such an algorithm would
improve the time complexity of protocol Contain if it were to be executed in a
synchronous system with rigid movements: note that Contain is designed for the
weaker models of SSYNC (Non-Rigid) or ASYNC (Rigid).

4.3 Open Problems

Some questions follow immediately from the above solutions: Can Mutual Vis-
ibility be solved in ASYNC without additional assumptions (like agreement on
direction) ? What is the power of rigidity ? is it necessary in ASYNC ? Is there
a Non-Rigid solution that employs less than 3 colors ? Can Mutual Visibility be
solved without colors and without additional information ? Note that the two
colors of protocol Shrink are used only for termination purposes, and they could
be traded by knowledge of n.



5 Partial Luminosity: Communication versus Memory

5.1 The Setting and the Problem

All the results discussed so far assume the availability of lights that are externally
visible to robots performing their Look operation, as well as locally persistent
from one computation cycle to the next. Visibility of lights is mostly used by the
robots to communicate pieces of information, while persistence is providing them
with limited memory in an otherwise oblivious system. As seen in the previous
Sections, the combination of these capabilities is understandably quite powerful.

To better understand the power of communication versus the one of mem-
ory in robots’ computation, in [15] the two capabilities have been considered
separately. More precisely, two robots’ models have been proposed. For silent
finite-state robots (FState), the light of a robot is visible only to the robot it-
self. For finite-communication robots (FComm), a robot’s light is visible only to
the other robots. The two settings have been studied in relation to the classical
rendezvous problem.

rendezvous consists of having two robots meet in the same point. It is well
known that in the oblivious robots’ model without any light, the problem is
solvable only in FSYNC [21]. The main problem is “conscious” symmetry breaking,
which cannot be achieved under SSYNC and ASYNC schedulers. On the other hand,
it is solvable for luminous robots (with full lights); in fact there is a 2-colors
algorithm for SSYNC, which is optimal [23], and a 4 colors algorithm in ASYNC

(described in Section 3.2) [6].
When considering FState versus FComm robots, several components have

emerged. For example, it has become more evident that the power of memory
versus the one of communication is highly connected to other capabilities of the
robots. In particular, the rigidity of their movements, and the level of synchrony
of the scheduler. It is indeed the combined use of these features that allows
rendezvous to be solved.

5.2 FState rigid Robots in SSYNC

When the lights provide only constant memory, an algorithm using six colors
(internal states) has been devised for rigid robots in SSYNC.

The main idea of the algorithm is to make use of the (possibly different)
units of distance of the robots to have them gather either as a result of a series
of “symmetric” rules, or by exploiting any accidental symmetry breaking that
might happen due to lack of synchrony or to disagreements on the unit distance.
The role of internal states is to allow the robots to recognize such symmetry
breaking, should it occur.

Intuitively, the attempted behaviour of the robots is the following: they try
to reach a configuration in which they both observe the other robot at distance
greater than (or equal to) their own unit. They then try to switch position and,
when this happens, they attempt to gather by meeting in the mid-point between
them. Note that the internal state can be used to differentiate the various stages



of this attempted behaviour and, in particular, to memorize the other’s position
(left/right) and thus detect a switch. It can be shown that if the attempted
behaviour is indeed reached, gathering is eventually achieved. On the other hand,
if the attempted behaviour is not reached (because of disagreement on the unit
distance or asymmetries in the activation scheduling), a detectable symmetry
breaking occurs, which can be immediately exploited to gather anyway.

Theorem 8. [15] In SSYNC, Rendezvous of two FState rigid robots is solvable
with six internal states.

5.3 FComm rigid Robots in ASYNC

Also in ASYNC for FState robots, the algorithm uses the local unit distance as a
computational tool, but in a rather different way, since a robot cannot remember
its own color and has to infer information by observing the other robot’s light.

As before, the robots attempt to coordinate a behaviour that would eventu-
ally result in gathering if their schedule happens to be synchronized and/or their
unit distances are the same, but that would achieve gathering also for any break
of symmetry given by a deviation from the attempted behaviour. Intuitively,
the two robots try to reach a configuration in which they both see each other
at distance lower than their unit distance. At this point they try to compare
their unit distance, in order to break symmetry. They do that by attempting
the creation of a configuration where their distance is equal to the sum of the
respective unit distances. When this is accomplished, each robot can infer the
other’s unit and compare it with its own. If a robot has a smaller unit, it moves
towards its partner, which waits. Otherwise, if their units are equal, as soon as
a robot wakes up, it moves towards the mid-point and orders its partner to stay
still. If both robots do so, they gather in the middle. If one robot is delayed due
to asynchrony, it acknowledges the order to stay still and tells the other robot
to come.

The coordination required to accomplish this overall attempted behaviour
relies on the communication through the external lights, as well as on some
level of synchrony that may or may not occur depending on the scheduler. If it
does not occur, i.e., if the robots find themselves in different states, symmetry
is broken and it can be shown that gathering is guaranteed anyway.

Theorem 9. [15] In ASYNC, Rendezvous of two rigid FComm robots is solvable
with twelve colors.

5.4 FComm Robots in SSYNC

The situation of FComm Robots in SSYNC is quite different and much simpler.
Indeed, there exist an algorithm using 3 colors, which is optimal and does not
even require rigidity of movement. The robots can assume three colors: a, b,
and c. If a robot sees the other colored a, it colors itself b and it moves to the
mid-point between them, if a robot sees the other colored b, it colors itself c and



it stay still, finally, if a robot sees the other colored c, it colors itself a and moves
to the other robot’s position (the algorithm is depicted in Figure 6). It is easy
to see that such a simple algorithm solves the problem.

See#
a# MOVE%to%half%

See#
b#

See#
c#

Color%%myself%b%

Fig. 6. SSYNC rendezvous in FComm. 1) the content of a circle represents what the
computing robot sees; 2) the caption on top of a transition describes the change of the
robot’s color; 3) the caption below a transition describes the corresponding movement
(if any) prescribed by the algorithm.

Theorem 10. [15] In ASYNC, Rendezvous of two FState robots is solvable with
three colors.

5.5 Open Problems

The above results open more questions than they close. The general question
on the relationship between the computability power of external lights versus
internal lights, and thus on whether it is better to communicate or to remember
is still open. The striking difference between the simplicity of the SSYNC solution
for the FComm model and the complexity of the one for the FState model, as
well as the inability to find a SSYNC solution for FState, seem to indicate that
FComm is more powerful that FState.

Another parameter that plays an important role in robots’ computational
power is represented by rigidity of movement, which appears to be crucial to be
able to find solutions in FState and in ASYNC in the FComm model. Is rigidity
necessary ?

6 Computing by Luminous Robots: Sequences of
Patterns

6.1 The Setting and the Problem

Pattern formation by oblivious robots is one of the basic problems and it has been
studied extensively in various settings (e.g., see [13, 16, 21, 24]). A pattern is given



to each robots as a set of point in its own coordinate system, the robots must
place themselves in the plane so to form the pattern, possibly scaled, rotated or
translated.

Forming a sequence of patterns is the natural next step. The main challenge
is to have the oblivious robots create some form of memory in the environment
to be able to move from one pattern to the next. Let S =< S0, . . . , Sm−1 > be
the sequence of patterns to be formed, and let Γ be the initial configuration of
the robots. A set of robots are said to form S if they form the infinite periodic
sequence S∞ = 〈S0, S2, . . . , Sm−1〉∞, starting from an arbitrary pattern P ∈ S.

6.2 Solutions

Not surprisingly, both with and without lights, the sequences of patterns formable
by the robots highly depend on symmetry considerations. Intuitively, in the
model of robots without lights, it is not possible to form sequences where the
patterns have different levels of symmetry (“symmetricity”). The reason is that
robots located in symmetric points have the same view of the environment and
they can be forced to behave exactly in the same way, never breaking their sym-
metry class. In particular the “symmetricity” of each pattern must divide that
of the starting configuration.

Without lights, a sequence of patterns can be formed by rigid robots in SSYNC

if and only if i) the level of symmetry of each pattern is the same; ii) the patterns
contain all the same number of points; iii) no pattern can appear more than once
in the sequence [4].

For luminous robots, a quite different characterization holds for the weaker
ASYNC model. The “symmetricity” of each pattern must still divide the one of
the starting configuration. However, in striking contrast with the previous case,
a sequence of patterns can be formed by luminous robots also allowing: i) the
level of symmetry of each pattern to change; ii) the patterns to contain different
numbers of points (contractions); iii) the sequence to contain repeated patterns
(repetitions) [5].

The availability of lights is clearly very powerful, and it is exploited mainly
to allow symmetry breaking in various situations: for example, to permanently
identify a set of leaders, to color robots that need to move on the same point
for forming a pattern and later need to move away from each other, to color
differently instances of a same pattern that repeats in the sequence. Interestingly,
the necessary number of colors f(S) for forming sequence S, although difficult
to express in a closed formula, is easily computable and bounded as follows:

µ(S)
1

αM (S) · (dαM (S)/αm(Si)e) > f(S) ≥ max{µ(S)
1

αM (S) , dαM (S)/αm(S)e}

where µ(S) is the maximum number of occurrences of some pattern in S, and
αM (S) (resp αm(S)) is the maximum (resp. minimum) number of classes of
robots with the same view of the environment (“symmetricity”) in some pattern
in S.



Theorem 11. [5] Any sequence of patterns S can be performed by robots with
O(f(S)) colors.

7 Conclusions

In this paper we have reviewed the existing results on computations by luminous
robots. The investigations have just started and the current results leave many
new research directions and open problems.

First of all, the computational picture of the power of luminous robots is
not fully understood because some gaps still exist: for example, the relationship
between ASYNC luminous robots and FSYNC non-luminous ones is still unknown.
It is clear that the availability of lights highly increases the robots’ capabilities;
what is not clear is the impact that other assumptions have in combination with
lights. For example, rigidity of movement seems to be crucial in some settings
for the robots to exploit the presence of lights: this is especially true for lights
that provides only internal states (FState) and lights that are instead only vis-
ible to others (FComm), but a formal proof is still missing. An other important
question left unanswered is whether there exists a computational difference be-
tween FState and FComm: is it more useful for the robots to remember or to
communicate ?

Acknowledgements. I would like to thank the researchers who have collabo-
rated with me in the investigations on luminous robots: Shantanu Das, Giuseppe
Di Luna, Sruti Gan Chaudhuri, Federico Poloni, Giuseppe Prencipe, Nicola San-
toro, Giovanni Viglietta and Masafumi Yamashita

References

1. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing
by mobile robots: Gathering. SIAM Journal on Computing, 41(4): 829-879, 2012.

2. R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM Journal on Computing, 34:1516–1528, 2005.

3. R. Cohen and D. Peleg. Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science, 399:71–82, 2008.

4. S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of ge-
ometric patterns with oblivious mobile robots. Distributed Computing, in press,
2015.

5. S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Synchronized
dancing of oblivious chameleons. In 7th Int. Conference on FUN with Algorithms,
113-124, 2014.

6. S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power of
lights: synchronizing asynchronous robots using visible bits. In 32nd Int. Confer-
ence on Distributed Computing Systems (ICDCS), 506–515, 2012.

7. Y. Dieudonné, and F.Petit. Scatter of weak mobile robots. Parallel Processing
Letters,19(1):175–184, 2009.

8. Y. Dieudonné and F. Petit. Self-stabilizing gathering with strong multiplicity
detection. Theoretical Computer Science, 428(13), 2012.



9. G.A. Di Luna, P. Flocchini, S. Gan Chaudhuri, N. Santoro, and G. Viglietta.
Robots with lights: overcoming obstructed visibility without colliding. In 16th Int.
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
150–164, 2014.

10. G.A. Di Luna, P. Flocchini, F. Poloni, N. Santoro, and G. Viglietta. How oblivious
mobile robots can achieve mutual visibility. In Proc. of 26th Canadian Computa-
tional Geometry Conference (CCCG), 2014.

11. G.A. Di Luna, P. Flocchini, S. Gan Chaudhuri, F. Poloni, N. Santoro,
and G. Viglietta. Mutual visibility by luminous robots without collisions.
http://arxiv.org/abs/1503.04347, 2015.

12. P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, 2012.

13. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern for-
mation by asynchronous oblivious robots. Theoretical Computer Science 407(1-3),
412–447, 2008.

14. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asyn-
chronous robots with limited visibility. Theoretical Computer Science, 337(1-
3):147–168, 2005.

15. P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous of two
robots with constant memory. In 20th Int. Colloquium on Structural Information
and Communication Complexity (SIROCCO), 189–200, 2013.

16. N. Fujinaga, Y. Yamauchi, S. Kijima and M. Yamashita. Asynchronous pattern
formation by anonymous oblivious mobile robots. In 26th Int. Symposium on
Distributed Computing (DISC), 312-325, 2012.

17. T. Izumi, M. Gradinariu Potop-Butucaru, and S. Tixeuil. Connectivity-preserving
scattering of mobile robots with limited visibility. In 12th Int. Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), 319–331, 2010.

18. J. Lin, A.S. Morse, and B.D.O. Anderson. The multi-agent rendezvous problem.
parts 1 and 2. SIAM Journal on Control and Optimization, 46(6):2096–2147, 2007.

19. D. Peleg, Distributed coordination algorithms for mobile robot swarms: new di-
rections and challenges. In 7th Int. Workshop on Distributed Computing (IWDC),
1–12, 2005.

20. G. Prencipe. The effect of synchronicity on the behavior of autonomous mobile
robots. Theory of Computing Systems, 38(5):539–558, 2005.

21. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing, vol. 28, pp. 1347–1363, 1999.

22. R. Vaidyanathan, C. Busch, J. Trahan, G. Sharma, and S. Rai. Logarithmic-time
complete visibility for robots with lights. In 29th IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS), 2015.

23. G. Viglietta. Rendezvous of two robots with visible bits. In 9th Int. Symposium
on Algorithms and Experiments for Sensor Systems, Wireless Networks and Dis-
tributed Robotics (ALGOSENSORS), 291-306, 2013.

24. M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by obliv-
ious anonymous mobile robots. Theoretical Computer Science, 411(26-28):2433 –
2453, 2010.


