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Abstract—The temporal component of social networks is often
neglected in their analysis, and statistical measures are typically
performed on a “static” representation of the network. As a
result, measures of importance (like betweenness centrality)
cannot reveal any temporal role of the entities involved. Our
goal is to start filling this limitation by proposing a form of
temporal betweenness measure, and by using it to analyse a
knowledge mobilization network. We show that this measure,
which takes time explicitly into account, allows us to detect
centrality roles that were completely hidden in the classical
statistical analysis. In particular, we uncover nodes whose static
centrality was considered negligible, but whose temporal role is
instead important to accelerate mobilization flow in the network.
We also observe the reverse behaviour by detecting nodes with
high static centrality, whose role as temporal bridges is instead
very low. By revealing important temporal roles, this study is a
first step towards a better understanding of the impact of time
in social networks, and opens the road to further investigation.

I. INTRODUCTION

Highly dynamic networks are networks where connectivity
changes in time and connection patterns display possibly com-
plex dynamics. Such networks are more and more pervasive
in everyday life and the study of their properties is the object
of extensive investigation in a wide range of very different
contexts. Some of these contexts are typically studied in com-
puter science, such as wireless, adhoc networks, transportation,
vehicular networks, satellites, military and robotic networks
(e.g., see [6], [7], [16], [23], [25], [26]); while others belong to
totally different disciplines. This is the case for example, of the
nervous system, livestock trade, epidemiological networks, and
multiple forms of social networks (e.g., see [21], [24], [27],
[28], [29], [31]). Clearly, while being different in many ways,
these domains display common features; time-varying graphs
(TVGs) represent a model that formalizes highly dynamic
networks encompassing the above contexts into a unique
framework, and emphasizes their temporal nature [8].

Knowledge Mobilization (KM) refers to the use of knowl-
edge towards the achievement of goals [13]. Scientists, for
example, use published papers to produce new knowledge in
further publications to reach professional goals. In contrast,
patient groups can use scientific knowledge to help foster
change in patient practices, and corporations can use scientific
knowledge to reach financial goals. Recently, researchers have

started to analyse knowledge mobilization networks (KMN)
using a social network analysis (SNA) approach (e.g., see
[3], [5], [9], [10], [20]). In particular, [14] proposed a novel
approach where a heterogeneous network composed of a
main class of actors subdivided into three sub-types (indi-
vidual human and non-human actors, organizational actors,
and non-human mobilization actors) associated according to
one relation, knowledge mobilization (a Mobilization-Network
approach). Data covered a seven-year period with static net-
works for each year. The mobilization network was analysed
using classical SNA measures (e.g., node centrality measures,
path length, density) to produce understanding for KM using
insights from network structure and actor roles [14].

The KM SNA studies mentioned above, however, lack a
fundamental component: in fact, their analysis is based on a
static representation of KM networks, incapable of sufficiently
accounting for the time of appearance and disappearance of
relations between actors beyond static longitudinal analysis.
Indeed, incorporating the temporal component into analysis
is a challenging task, but it is undoubtedly a critical one,
because time is an essential feature of these networks. Tem-
poral analysis of dynamic graphs is in fact an important and
extensively studied area of research (e.g., see [12], [19], [17],
[18], [30], [32], [33]), but there is still much to be discovered.
In particular, most temporal studies simply consider network
dynamics in successive static snapshots thus capturing only a
very partial temporal component by observing how static pa-
rameters evolve in time while the network changes. Moreover,
very little work has been dedicated to empirically evaluating
the usefulness of metrics in time (e.g., see [1], [22]).

In this paper, we represent KMN by TVGs and we propose
to analyse them in a truly temporal setting. We provide, for
the first time on a real data set, an empirical indication of the
effectiveness of a temporal betweenness measure specifically
designed for TVGs. In particular, we focus on data extracted
from [14], here referred to as Knowledge-Net. We first consider
static snapshots of Knowledge-Net corresponding to the seven
years of its existence, and by studying the classical centrality
measures in those time intervals, we provide rudimentary
indications of the networks’ temporal behaviour. To gain a
finer temporal understanding, we then concentrate on temporal



betweenness following a totally different approach. Instead
of simply observing the static network over consecutive time
intervals, we focus on the TVG that represent Knowledge-Net
and we compute a form of betweenness that explicitly and
globally takes time into account. We compare the temporal
results that we obtain with classical static betweenness mea-
sures to gain insights into the impact that time has on the
network structure and actor roles. We notice that, while many
actors maintain the same role in static and dynamic analysis,
some display striking differences. In particular, we observe the
emergence of important actors that remained invisible in static
analysis, and we advance explanations for these. Results show
that the form of temporal betweenness we apply is effective
at highlighting the role of nodes whose importance has a
temporal nature (e.g., nodes that contribute to mobilization
acceleration). This research opens the road to the study of
other temporal measures designed for TVGs.

II. KNOWLEDGE-NET

A. Data description

Knowledge-Net is an heterogeneous network where nodes
represent human and non-human actors (researchers, projects,
conference venues, papers, presentations, laboratories), and
edges represent knowledge mobilization between two actors.
The network was collected for a period of seven years [14].
Once an entity or a connection is created, it remains in the
system for the for entire period of the analysis.

Table I provides a description of the Knowledge-Net dataset.
The dataset consists of 366 vertices and 750 edges in 2011.
The number of entities and connections vary over times
starting from only 10 vertices and 14 edges in 2005 and
accumulating to the final network year in 2011. Knowledge-
Net is mainly comprised of non-human actors, 272 in total
(non-human mobilization actors, NHMA, non-human individ-
ual actors, NHIA, and organizational actors, OA), in relation
with 94 human actors (HA). Human actors include principle
investigators (PI), highly qualified personnel (HQP) and col-
laborators (CO). It is through mobilization actors (NHMA)
that individual, organizational actors and mobilization actors
associate and mobilize knowledge to reach goals. For example,
scientists mobilize knowledge through articles where not all
contributing authors might be in relation with all other authors,
yet all relate with the publication [14]. These non-human
mobilization actors make up the bulk of the network including
conference venues, presentations (invited oral, non-invited oral
and poster), articles, journals, laboratories, research projects,
websites, and theses.

Classical statistical parameters have been calculated for
Knowledge-Net, representing it as a static graph where the
time of appearance of nodes and edges did not hold any
particular meaning. In doing so, several interesting observa-
tions were made regarding the centrality of certain nodes as
knowledge mobilizers and the presence of communities [14].
In particular, all actor types increased in number over the
7 years indicating a rise in new mobilization relations over
time. Although non-human individual actor absolute numbers

TABLE I
Knowledge-Net DATA SET WITH CHARACTERISTICS OF ACTORS AND THEIR

ROLES AT DIFFERENT TIMES

Start Duration #Nodes #Edges Granularity

2005 7 Years 366 750 1 Year

Actor
Type 2005 2006 2007 2008 2009 2010 2011

HIA 3 22 27 46 51 76 94

NHIA 0 3 6 9 9 9 15

NHMA 7 25 43 87 132 194 248

OA 0 5 5 9 9 9 2

Total 10 55 81 151 201 288 366

remained small (ranging from 3 in 2006 to 15 in 2011),
these actors were critical to making visible tacit (non-codified)
knowledge mobilization from around the world (mostly lab-
oratory material sharing, including from organizations and
universities in the USA, from Norway, and from Canadian
universities). Finally, embedded in human individual actor
counts were individuals that the laboratory acknowledged in
peer-reviewed papers, thus making further tacit and explicit
knowledge mobilization visible.

B. Analysis of consecutive snapshots

To provide more clear statistics on the Knowledge-Net
dataset and a ground for better understanding of temporal
metrics, we first calculated classical statistical measures (e.g.,
node centrality measures, path length, density) on seven static
graphs, corresponding to the seven years of study. The average
for each value for the graphs is calculated to represent a
benchmark on how the rank for each node is compared to
others.

The statistical data presented in Table II provides valuable
information about the graph. The steady decrease in the (nor-
malized) centrality values confirms that the network growth is
not symmetric, so the centrality values have long tails. The low
value of normalized betweenness, along with the low values
for density, confirms that the graph is coupled in a way that
there are a great number of shortest paths between any two
arbitrary vertices in the graph. This caused the betweenness for
most vertices to be similar and quite low when compared to the
ones of nodes with the highest betweenness. Low average path
length is a sign that the network presents small world charac-
teristics and the knowledge mobilization to the whole network
is expected to be conducted only in a few hops. Meanwhile,
the decreasing graph density along with the increasing average
degree represent the slow growth in the number of edges
compared to the number of nodes. Escalation in the number
of communities with increase in graph modularity metrics
shows that the knowledge mobilization actors tend to form
communities as time progresses. As the normalized average
betweenness decreases steadily, it can be concluded that a
few vertices at each community play the role of mediators



TABLE II
SOME STATIC STATISTICAL PARAMETERS CALCULATED FOR SUCCESSIVE

SNAPSHOTS

2005 2006 2007 2008 2009 2010 2011

Ave. Degree 1.40 1.32 1.63 1.84 1.98 2.02 2.04

Diameter 4 5 5 6 6 6 6

Density 0.31 0.04 0.04 0.02 0.02 0.01 0.01

#Communities 4 3 6 8 8 15 12

Modularity 0.17 0.52 0.46 0.47 0.46 0.54 0.54

Ave.
Clustering
Coefficient

0.41 0.06 0.21 0.22 0.20 0.24 0.23

Ave. Path
Length 2.04 3.04 3.06 3.26 3.34 3.46 3.50

Ave.
Normalized
Closeness

0.51 0.33 0.33 0.31 0.30 0.29 0.29

Ave. Eccen-
tricity 3.10 4.41 4.40 4.70 4.80 4.83 4.83

Ave.
Betweenness 4.70 58.36 83.53 169.70 234.89 354.23 456.18

Ave.
Normalized
Betweenness

0.13 0.03 0.02 0.01 0.01 ≈ 0 ≈ 0

Ave. Page
Rank 0.10 0.01 0.01 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ave. Eigen-
vector 0.52 0.19 0.15 0.10 0.09 0.07 0.05

and create the link between communities.
Apart from these general observations, a static analysis

of consecutive snapshots, does not provide deep temporal
understanding. For example, it does not reflect which entities
engage in knowledge mobilization in a timely fashion, e.g. by
facilitating fast mobilization, or slowing mobilization flow.

To tackle some of these questions, we represent Knowledge-
Net as a TVG and we propose to study it by employing a form
of temporal betweenness that makes use of time in an explicit
manner.

III. TIME-VARYING GRAPHS

A. Definition

Time-varying Graphs are graphs whose structure varies over
time. Following [8], a time-varying graph (TVG) is defined
as a quintuple G = (V,E, T , ρ, ζ), where V is a finite set
of nodes; E ⊆ V × V is a finite set edges. The graph is
considered within a finite time span T ⊆ T, called lifetime of
the system. ρ : E×T → {0, 1} is the edge presence function,
which indicates whether a given edge is available at a given
time; ζ : E×T → T, is the latency function, which indicates
the time it takes to cross a given edge if starting at a given
date. The model may, of course, be extended by defining the
vertex presence function (ψ : V × T → {0, 1}), and vertex
latency function (φ : V × T → {0, 1}). The footprint of G is
a static graph composed by the union of all nodes and edges
ever appearing during the lifetime T.

Fig. 1. A small portion of Knowledge-Net represented as a TVG.

When representing Knowledge-Net as a TVG, we notice
that the latency ζ is always zero, as an edge represents
a relationship and its creation does not involve any delay;
moreover, edges and nodes exist from their creation (their
birth-date) to the end of the system lifetime. Let birth-date(e)
denote the year when edge e is created. An example of a small
portion of Knowledge-Net represented as a TVG is given in
Figure 1.

B. Journeys

A journey J in a TVG G is a temporal walk defined as a
sequence of ordered pairs {(e1, t1), (e2, t2),...,(ek, tk)}, such
that {e1, e2, ..., ek}, called the journey route and represented
by R, is a walk in G, if and only if ρ(ei, ti) = 1 and ti+1 ≥
ti+ζ(ei, ti) for all i < k. Every journey has a departure(J )
and an arrival(J ) that refer to journey’s starting time t1 and
its last time tk + ζ(ek, tk). Journeys are divided into three
classes based on their variations based on the temporal and
topological distance [4]. Journeys that have earliest arrival
times are called foremost journeys, journeys with the smallest
topological distance are referred to as shortest journeys, while
the journey that takes the smallest amount of time is called
fastest. Moreover, we call foremost increasing journey the ones
whose route {e1, e2, . . . , ek} is such that birth-date(ei) ≤
birth-date(ei+1).

When representing Knowledge-Net as a TVG G we notice
that, due to zero latency and to the fact that edges never
disappear once created, any shortest journey route in G is
equivalent to a shortest path on the static graph corresponding
to its footprint; moreover, the notion of fastest journey does
not have much meaning in this context, because on any route
corresponding to a journey, there would be a fastest one.
On the other hand, the notion of foremost journey, and in
particular of foremost increasing journey, is extremely relevant
as it describes timely mobilization flow, i.e., flow that arrives
at a node as early as possible.

C. Temporal Betweenness

Betweenness is a classic measure of centrality extensively
investigated in the context of social network analysis; the



betweenness of a node v ∈ V in a static graph G = (V,E) is
defined as follows:

B(v) =
∑

u6=w 6=v∈V

|P (u,w, v)|
|P (u,w)|

(1)

where |P (u,w)| is the number of shortest paths from u to w
in G, and |P (u,w, v)| is the number of those passing through
v. Even if static betweenness is “atemporal”, we denote here
by B(v)T the static betweenness of a node v in a system
whose lifetime is T . Typically, vertices with high betweenness
centrality direct a greater flow, and thus, have a high load
placed on them, which is considered as an indicator for their
importance as potential gatekeepers in the network.

While betweenness in static graphs is based on the notion of
shortest path, its temporal version can be extended into three
different measures to consider shortest, foremost, and fastest
journeys for a given lifetime T [30]. As mentioned earlier,
in the context of Knowledge-Net, fastest betweenness cannot
really be defined, and shortest betweenness would coincide
with its static counter-part. We, thus, focus on foremost be-
tweenness. Note that the number of foremost journeys between
two nodes can be exponential, or even unbounded, and the
computation of foremost betweenness is an intractable task.
In this paper we consider a form of foremost betweenness
that, although still counting possibly an exponential number of
journey, is more manageable. Foremost betweenness TBT

F (v)
for node v with lifetime T is here defined as follows:

TBT
F (v) =

∑
u6=w 6=v∈V

|FT (u,w, v)|
|FT (u,w)|

(2)

where |FT (u,w)| is the number of foremost increasing
journey routes between u and w during time frame T and
|FT (u,w, v)| is the number of the ones passing through v
in the same time frame. Besides being a little more com-
putationally manageable, choosing increasing journey routes
emphasizes the role of the first year of creation of a connec-
tion in the network. To take into account possible network
disconnections, we multiply the betweenness value TBT

F (v)

by the adjustment coefficient n(v)
n where n(v) is the number

of nodes in the connected component to which v belongs,
and n is the total number of nodes. Analogous adjustment is
performed for B(v).

Highly-ranked vertices for foremost betweenness do not
simply act as gatekeepers of flow, like their static counter-
part. In fact, they direct the flow that conveys a message in
an earliest transmission fashion. In other words, intuitively,
they provide some form of “acceleration” in the flow of
information.

IV. FOREMOST BETWEENNESS OF KNOWLEDGE-NET

In this Section we focus on Knowledge-Net, and we study
TBT

F (v) for all v. Nodes are ranked according to their
betweenness values and their ranks are compared with the
ones obtained calculating their static betweenness BT (v) in
the same time frame. Given the different meaning of those

TABLE III
LIST OF HIGHEST RANKED ACTORS ACCORDING TO TEMPORAL (RESP.

STATIC) BETWEENNESS, ACCOMPANIED BY THE CORRESPONDING STATIC
(RESP. TEMPORAL) RANK IN LIFETIME [2005-2011].

Temporal to Static Static to Temporal

Actor Temporal
Rank

Static
Rank Actor Static

Rank
Temporal
Rank

L1(05) 1 1 L1(05) 1 1
H1(05) 2 2 H1(05) 2 2
A1(06) 3 3 A1(06) 3 3
A2(08) 4 4 A2(08) 4 4
P1(06) 5 8 A5(08) 5 12
A3(07) 6 9 A4(09) 6 7
A4(09) 7 6 P2(08) 7 9
S1(10) 8 115 P1(06) 8 5
P2(08) 9 7 A3(07) 9 6
J1(06) 10 160 P3(10) 10 17
C1(07) 11 223 A6(11) 11 18
A5(08) 12 5 A8(09) 12 36
I1(09) 13 28 P4(10) 13 22
O1(05) 14 45 P5(11) 14 27
S2(05) 15 46 H2(05) 15 44
I2(05) 16 47 A7(09) 16 21
P3(10) 17 10 A9(10) 17 31
A6(11) 18 11 P5(11) 18 69
C2(10) 19 133 P6(10) 19 23
J2(09) 20 182
A7(09) 21 16

two measures, we expect to see the emergence of different
behaviours, and, in particular, we hope to be able to detect
nodes with important temporal roles that were left undetected
in the static analysis.

A. Foremost Betweenness during the lifetime of the system

Table III shows the temporally ranked actors accompanied
by their static ranks, and the high ranked static actors with
their temporal ranks, both with lifetime T = [2005-2011]. In
our naming convention, an actor named Xi(yy) is of type X ,
birth date yy and it is indexed by i; types are abbreviated as
follows: H (human), L (Lab), A (article), C (conference),
J (journal), P (project), C (paper citing a publication), I
(invited oral presentation), O (oral presentation). Note that
only the nodes whose betweenness has a significant value
are considered, in fact betweenness values tend to lose their
importance, especially when the differences in the values of
two consecutive ranks are very small [11].

Interestingly, the four highest ranked nodes are the same
under both measures; in particular, the highest ranked node
(L1(05)) corresponds to the main laboratory where the data
is collected and it is clearly the most important actor in the
network whether considered in a temporal or in a static way.
On the other hand, the table reveals several differences worth
exploring. From a first look we see that, while the vertices



highest ranked statically appear also among the highest ranked
temporal ones, there are some nodes with insignificant static
betweenness, whose temporal betweenness is extremely high.
This is the case, for example, of nodes S1(10) and J1(06).

1) The case of node S1(10): To provide some interpretation
for this behaviour we observe vertex S1(10) in more details.
This vertex corresponds to a poster presentation at a confer-
ence in 2010. We explore two insights. First, although S1(10)
has a relatively low degree, it has a great variety of temporal
connections. Only three out of ten incident edges of S1(10)
are connected to actors that are born on and after 2010, and
the rest of the neighbours appear in different times, accounting
for at least one neighbour appearing each year for which the
data is collected. This helps the node to operate as a temporal
bridge between different time instances and to perhaps act as
a knowledge mobilization accelerator.

Second, S1(10) is close to the centre of the only static
community present in [2010-2011] and it is connected to the
two most important vertices in the network. The existence
of a single dense community, and the proximity to two most
productive vertices can explain its negligible static centrality
value: while still connecting various vertices S1(10) is not
the shortest connector and its betweenness value is thus low.
However, a closer temporal look reveals that it plays an
important role as an interaction bridge between all the actors
that appear in 2010 and later, and the ones that appear earlier
than 2010. This role remained invisible in static analysis, and
only emerges when we pay attention to the time of appearance
of vertices and edges. On the basis of these observations,
we can interpret S1(10)’s high temporal betweenness value as
providing a fast bridge from vertices created earlier and those
appearing later in time. This lends support to the importance of
poster presentations that can blend tacit and explicit knowledge
mobilization in human - poster presentation - human relations
during conferences and continue into future mobilization with
new non-human actors as was the case for S1(10) [2].

2) The case of node J1(06): J1(06), the Journal of Neuro-
chemistry, behaves similarly to S1(10) with its high temporal
and low static rank. As opposed to S1(10), this node is
introduced very early in the network (2006); however, it is
only active (i.e. has new incident edges) in 2006 and 2007.
It has only three neighbours, A1(06), A3(07), and C1(07),
all highly ranked vertices statically (A1(06), A3(07)), or tem-
porally (C1(07)). Since its neighbouring vertices are directly
connected to each other or in close proximity of two hops,
J1(06) fails to act as a static short bridge among graph entities.
However, its early introduction and proximity to the most
prominent knowledge mobilizers helps it become an important
temporal player in the network. This is because temporal jour-
neys overlook geodesic distances and are instead concerned
with temporal distances for vertices. These observations might
explain the high temporal rank of J1(06) in the knowledge
mobilization network.

Fig. 2. Transformation of a temporal graph into a weighted graph used for
community detection.

B. A Finer look at foremost betweenness

A key question is whether the birth-date of a node is an
important factor influencing its temporal betweenness. To gain
insights, we conducted a finer temporal analysis by considering
TBT

F for all possible birth-dates, i.e, for T = [x,2011], ∀x ∈
{2005, 2006, 2007, 2008, 2009, 2010, 2011}. This allowed us
to observe how temporal betweenness varies depending on the
considered birth-date.

Before concentrating on selected vertices (statically or tem-
porally important with at least one interval), and analysing
them in more detail, we briefly describe a temporal community
detection mechanism that we employ in analysis.

1) Detection of temporal communities: We approximately
detect communities existing in temporal networks. To detect
communities involving x, we first determine the temporal
foremost journeys arriving at or leaving from x. We then
replace each journey with a single edge, creating a static graph
with an edge between x and all the vertices that are reachable
from or can reach x in a foremost manner. For instance, Fig. 2
shows the transformation of a graph into a directed weighted
graph that is used for community detection. We finally apply
existing directed weighted community detection algorithms
to compute communities around x [15]. The model is an
approximation since it overlooks the role that is played in
communities by vertices that fall along journeys while not
being their start or end-points; however, it is sufficient for our
purposes to give an indication of the community formation
around a node.

2) The case of node P1(06): This is a research project
led by the principle investigator at L1(05). The project was
launched in 2006 and its official institutional and funded
elements wrapped-up in 2011. Data in Table III support that
P1(06) has similar temporal and static ranks with regards to its
betweenness in lifetime [2005-2011]. One could conclude that
the temporal element does not provide additional information
on its importance and that the edges that are incident to P(06)-
1 convey the same temporal and static flow. However, there
is still an unanswered question on whether or not edges act
similarly if we start observing the system at different times.



Fig. 3. Comparison between different values for vertex P1(06). Ranks of
the vertex in the last interval are not provided as both betweenness values are
zero.

Will a vertex keep its importance throughout the system’s
lifetime?

The result of such analysis is provided in Fig. 3, where
TBT

F (P1(06)) is calculated for each birth-date (indicated in
the horizontal axis), with all intervals ending in 2011.

While both equally important during the entire lifetime
[2005-2011] of the study, this project seems to assume a rather
more relevant temporal role when observing the system in a
lifetime starting in year 2007 (i.e., T =[2007-2011]), when its
static betweenness is instead negligible. This seems to indicate
that the temporal flow of edges incident to P1(06) appearing
from 2007 on is more significant than the flow of the edges
that appeared previously.

With further analysis of P1(06)’s neighbourhood in [2007-
2011], we can formulate technical explanations for this be-
haviour. First, its direct neighbours also have better temporal
betweenness than static betweenness. Moreover, its neighbours
belong to various communities, both temporally and statically.
However, looking at the graph statically, we see several
additional shortest paths that do not pass through P1(06) (thus
making it less important in connecting those communities).
In contrast, looking at the graph temporally P1(06) acts
as a mediator and accelerator between communities. More
specifically, we observe that the connections P1(06) creates
in 2006 contribute to the merge of different communities that
appear only in 2007 and later. When observing within interval
[2006-2011], we then see that P1(06) is quite central from a
static point of view, because the appearance of time of edges
does not matter but, when observing it in lifetime [2007-2011]
node P1(06) loses this role and becomes statically peripheral
because the newer connections relay information in an efficient
temporal manner.

In other words, it seems that P1(06) has an important role
for knowledge acceleration in the period 2007-2011, a role that
was hidden in the static analysis and that does not emerge even
from an analysis of consecutive static snapshots. For research
funders, revealing a research project’s potentially invisible

Fig. 4. Comparison between different values for vertex A3(07). Ranks of
the vertex in the last interval are not provided as both betweenness values are
zero.

mobilization capacity is relevant. Research projects can thus
be understood beyond mobilization outputs and more in terms
of networked temporal bridges to broader impact.

3) The case of node A3(07): The conditions for A3(07),
a paper published in 2007, illustrate a different temporal
phenomenon. Node A3(07) has several incident edges in 2007
(similarly to node P1(06)) when both betweenness measures
are high. Peering deeper into the temporal communities formed
around A3(07) is revealing: up to 2007, this vertex is two
degrees from vertices that connect two different communities
in the static graph. The situation radically changes however
with the arrival of edges in 2008 that modify the structure of
those communities and push A3(07) to the periphery. The shift
is dramatic from a temporal perspective because A3(07) loses
it accelerator role where its temporal betweenness becomes
negligible, while statically there is only a slight decrease in
betweenness. The reason for a dampened decrease in static
betweenness is that this vertex is close to the centre of the
static community, connecting peripheral vertices to the most
central nodes of the network (such as L1(05) and H1(05)). It
is mainly proximity to these important vertices that sustains
A3(07)’s static centrality.

Such temporal insights lend further support to understanding
mobilization through a network lens coupled with sensitivity
to time. A temporal shift to the periphery for an actor translates
into decreased potential for sustained mobilization.

V. INVISIBLE RAPIDS AND BROOKS

On the basis of our observations, we define two concepts
to differentiate the static and temporal flow of vertices in
Knowledge Mobilization networks. We call rapids the nodes
with high foremost betweenness, meaning that they can po-
tentially mobilize knowledge in a timelier manner; and brooks
the ones with insignificant foremost betweenness. Moreover,
we call invisible rapids those vertices whose temporal be-
tweenness rank is considerably more significant than their
static rank (i.e., the ones whose centrality was undetected



by static betweenness), and invisible brooks the ones whose
static betweenness is considerably higher than their temporal
betweenness, meaning that these vertices can potentially be
effective knowledge mobilizers, yet they are not acting as
effectively as others due to slow or non-timely relations.

Invisible rapids and brooks can be present in different
lifetimes as their temporal role might be restricted to some
time intervals only; for example, as we have seen in the
previous Section, S1(10) and J1(06) are invisible rapids in
T = [2005-2011], P1(06) is an invisible rapid in T = [2007-
2011], A3(07) is an invisible brook in T = [2008-2011].

Tables IV and V indicate the major invisible rapids and
brooks observed in Knowledge-Net.

TABLE IV
MAJOR INVISIBLE RAPIDS

Actor Time Temp. Rank Stat. Rank Type

P1(06) [07-11] 5 105 project

S1(10) [05-11] 8 115 poster
[06-11] 8 113
[07-11] 7 115
[08-11] 5 104

J1(06) [05-11] 10 160 journal
[06-11] 10 154
[07-11] 10 223

C1(07) [05-11] 11 223 citing publication
[06-11] 11 220

J2(09) [06-11] 17 179 journal
[07-11] 16 182

C2(10) [05-11] 19 133 citing poster
[06-11] 16 132
[07-11] 15 133

The presence of a poster presentation, a research project,
two journals and a conference publication among the invisible
rapids supports that different types of mobilization actors can
impact timely mobilization while not being as effective at cre-
ating short paths among entities for knowledge mobilization.
In other words, they can play a role of accelerating knowledge
mobilization, but to a concentrated group of actors.

TABLE V
MAJOR INVISIBLE BROOKS

Actor Time Stat. Rank Temp. Rank Type

J3(08) [08-11] 9 117 journal
[09-11] 12 84

C3(11) [08-11] 10 191 citing publication
[09-11] 15 153

C4(11) [08-11] 15 105 citing publication

H2(05) [06-11] 16 118 researcher
[07-11] 15 134

A3(07) [08-11] 16 187 publication

C5(07) [08-11] 18 158 citing publication

As for invisible brooks, we observe a journal (the Biochem-
ica et Biophysica Acta-Molecular Cell Research (J3(08)), three

papers (C3(11), C4(07), and C5(07)) that cite publications
by the main laboratory in the study (L1(05)), a publication
(A3(07)) mobilizing knowledge from members of L1(05), and
a research assistant who worked on several research projects as
an HQP. In comparison with invisible rapids, there is a wider
variety in the type of mobilization actors that act as brooks
which does not readily lend itself to generalization.

Interestingly, we see the presence of journals among in-
visible rapids and brooks. From our analysis, it seems that
journals can hold strikingly opposite roles: on the one hand
they can contribute considerably to more timely mobilization
of knowledge while not being very strong bridges between
communities; while on the other hand, they can play critical
roles in bridging network communities, but at a slow pace. A
brook, the journal Biochemica et Biophysica Acta-Molecular
Cell Research (J3(08)), for example, helped mobilize knowl-
edge in two papers for L1(05) (in 2008 and 2009) and is a
journal in which a paper (in 2011) citing a L1(05) publication
was also published. Given expected variability in potential
mobilization for a journal, it is not surprising to see these
mobilization actors at both ends of the spectrum.

In contrast, the presence of a research project as an invisible
rapid is meaningful. It is meaningful in two ways. First,
because when public funders invest in research projects as mo-
bilization actor, an implicit if not explicit measure of success is
timely mobilization with potential impact inside and outside
of academia [14]. Ranking as a rapid (for a mobilization actor)
is one measure that could therefore help funding agencies
monitor and detect temporal change in mobilization networks.
Second, a research project as rapid is meaningful because
by its very nature a research project can help accelerate
mobilization for the full range of mobilization actors, including
other research projects. As such, it is not surprising that they
can become temporal conduits to knowledge mobilization in
all of its forms.

VI. CONCLUSION

In this paper, we proposed the use of a temporal between-
ness measure (foremost betweenness) to analyse a knowledge
mobilization network that had been already studied using
classical “static” parameters. Our goal was to see the impact on
the perceived static central nodes when employing a measure
that explicitly takes time into account. We observed interesting
differences. In particular, we witnessed the emergence of
invisible rapids: nodes whose static centrality was considered
negligible, but whose temporal centrality appears relevant. Our
interpretation is that nodes with high temporal betweenness
contribute to accelerate mobilization flow in the network and,
as such, they can remain undetected when the analysis is
performed statically. We conclude that foremost betweenness
is a crucial tool to understand the temporal role of the actors
in a dynamic network, and that the combination of static and
temporal betweenness is complementary to provide insights
into their importance and centrality.

Temporal network analysis as performed here is especially
pertinent for KM research that must take time into account to



understand academic research impact beyond the narrow short-
term context of academia. Measures of temporal betweenness,
as studied in this paper, can provide researchers and funders
with critical tools to more confidently investigate the role of
specific mobilization actors for short and long-term impact
within and beyond academia. The same type of analysis could
clearly be beneficial when applied to any other temporal
context.

In conclusion, we focused here on a form of temporal
betweenness designed to detect accelerators. This is only a
first step towards understanding temporal dimensions of social
networks; other measures are already under investigation.
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